![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專(zhuān)題模擬卷第三章 導(dǎo)數(shù)及其應(yīng)用(解析版)_第1頁(yè)](http://file4.renrendoc.com/view3/M03/24/3B/wKhkFma-miiAHmkSAAGQm1dviWs210.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專(zhuān)題模擬卷第三章 導(dǎo)數(shù)及其應(yīng)用(解析版)_第2頁(yè)](http://file4.renrendoc.com/view3/M03/24/3B/wKhkFma-miiAHmkSAAGQm1dviWs2102.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專(zhuān)題模擬卷第三章 導(dǎo)數(shù)及其應(yīng)用(解析版)_第3頁(yè)](http://file4.renrendoc.com/view3/M03/24/3B/wKhkFma-miiAHmkSAAGQm1dviWs2103.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專(zhuān)題模擬卷第三章 導(dǎo)數(shù)及其應(yīng)用(解析版)_第4頁(yè)](http://file4.renrendoc.com/view3/M03/24/3B/wKhkFma-miiAHmkSAAGQm1dviWs2104.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專(zhuān)題模擬卷第三章 導(dǎo)數(shù)及其應(yīng)用(解析版)_第5頁(yè)](http://file4.renrendoc.com/view3/M03/24/3B/wKhkFma-miiAHmkSAAGQm1dviWs2105.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三章導(dǎo)數(shù)及其應(yīng)用本試卷22小題,滿(mǎn)分150分。考試用時(shí)120分鐘一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.(2023·重慶·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上單調(diào)遞增”的(
)A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【解析】由題SKIPIF1<0若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0恒成立,SKIPIF1<0即SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上單調(diào)遞增”的必要不充分條件故選:SKIPIF1<0.2.(2023·四川自貢·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.有2個(gè)極大值點(diǎn) B.有1個(gè)極大值點(diǎn)和1個(gè)極小值點(diǎn)C.有2個(gè)極小值點(diǎn) D.有且僅有一個(gè)極值點(diǎn)【答案】D【分析】求導(dǎo),根據(jù)導(dǎo)函數(shù)的符號(hào)求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值點(diǎn)的定義即可得解.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,所以函數(shù)SKIPIF1<0的極小值點(diǎn)為SKIPIF1<0,沒(méi)有極大值點(diǎn),即函數(shù)SKIPIF1<0有且僅有一個(gè)極值點(diǎn).故選:D.3.(2023·重慶·統(tǒng)考三模)已知直線y=ax-a與曲線SKIPIF1<0相切,則實(shí)數(shù)a=(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0且x不為0,得SKIPIF1<0設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.故選:C4.(2023·四川成都·統(tǒng)考二模)若函數(shù)SKIPIF1<0在SKIPIF1<0處有極大值,則實(shí)數(shù)SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】函數(shù)SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0處有極大值,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0處有極小值,不合題意.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0處有極大值,符合題意.綜上可得,SKIPIF1<0.5.(2023·廣東汕頭·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的大致圖象為(
)A. B.C. D.【答案】C【解析】SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,故選:C6.(2023·重慶·統(tǒng)考一模)已知函數(shù)fx及其導(dǎo)函數(shù)f'(x)的定義域?yàn)镽,記g(x)=f'(x),A.f(1)=f(2) B.f(1)=f(3) C.f(1)=f(4) D.f(1)=f(5)【答案】D【分析】根據(jù)f2x+1從而求得g(1)=0,g(x【詳解】因?yàn)閒2x+1是偶函數(shù),所以f(?2x+1)=f兩邊求導(dǎo)得?2f'(?2所以g(2x+1)=?g(?2x+1)令x=1可得g(1)=?g因?yàn)間(x+2)為偶函數(shù),所以gx+2=g?x+2,即又因g(4?x)=?g(?x+2),所以g(1)=g(3)=0,故選:D.7.(2023·廣東佛山·統(tǒng)考一模)已知函數(shù)fx=logax,0<x<12a?x,x≥12(A.0,e?C.0,e?【答案】D【分析】當(dāng)0<x<12時(shí),f(x)=logax≥x構(gòu)造函數(shù)g(x)=2lnxx,求導(dǎo)判斷單調(diào)性,從而推出【詳解】當(dāng)0<x<1由圖可知,0<a此時(shí)若對(duì)任意0<x<1只需loga12≥14,即loga當(dāng)x≥12此時(shí)若對(duì)任意x≥12,(∴l(xiāng)n(1a)≥令g(x)=當(dāng)x∈(0,e),g'∴g(x綜上,116故選:D.8.(2023·黑龍江哈爾濱·哈師大附中統(tǒng)考三模)已知函數(shù)SKIPIF1<0,對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的奇函數(shù),因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為單調(diào)遞減函數(shù),且SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減函數(shù),由不等式SKIPIF1<0,可得SKIPIF1<0整理得到SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分。9.(2023·山西運(yùn)城·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,則下列說(shuō)法正確的是(
)A.曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0的極小值為SKIPIF1<0D.SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0【答案】BC【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,所以SKIPIF1<0的極小值為SKIPIF1<0,故C正確;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以最小值為SKIPIF1<0,故D錯(cuò)誤;故選:BC10.(浙江省金麗衢十二校、“七彩陽(yáng)光”2023屆高三下學(xué)期3月聯(lián)考數(shù)學(xué)試題)已知SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】對(duì)于A、B選項(xiàng),利用條件構(gòu)造SKIPIF1<0,比值換元將問(wèn)題轉(zhuǎn)化為單變量函數(shù)求值域問(wèn)題;對(duì)于C、D選項(xiàng),構(gòu)造函數(shù)SKIPIF1<0通過(guò)分析單調(diào)性判斷即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0綜上SKIPIF1<0,SKIPIF1<0,即B正確;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0)的零點(diǎn)y滿(mǎn)足SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0.所以要證SKIPIF1<0,即證SKIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以即證SKIPIF1<0而SKIPIF1<0所以SKIPIF1<0成立,即SKIPIF1<0成立,C正確因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,AD錯(cuò)誤.故選:B、C.11.(湖南省名校教研聯(lián)盟2023屆高三下學(xué)期4月聯(lián)考數(shù)學(xué)試題)已知SKIPIF1<0和SKIPIF1<0是定義在上SKIPIF1<0的函數(shù),若存在區(qū)間SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0則稱(chēng)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步.則(
)A.SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步B.存在SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步C.若存在SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步,則SKIPIF1<0D.存在區(qū)間SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步【答案】BC【分析】由題意轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上是否至少存在兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,結(jié)合零點(diǎn)存在性定理判斷選項(xiàng)A、B;結(jié)合導(dǎo)數(shù)找到函數(shù)的單調(diào)性及最值,再根據(jù)函數(shù)零點(diǎn)情況判斷選項(xiàng)C、D.【詳解】由題知SKIPIF1<0與SKIPIF1<0在上SKIPIF1<0同步,即SKIPIF1<0在SKIPIF1<0上,至少存在兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,對(duì)于A,SKIPIF1<0在上SKIPIF1<0單調(diào)遞增,故A錯(cuò)誤.對(duì)于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上必有一個(gè)零點(diǎn),故B正確.對(duì)于C,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,至多有一個(gè)零點(diǎn),不符合題意,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值,若SKIPIF1<0要有兩個(gè)零點(diǎn),則SKIPIF1<0,解得SKIPIF1<0,故C正確.對(duì)于D,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0沒(méi)有零點(diǎn),故D錯(cuò)誤.故選:BC.12.(重慶市2023屆高三三模數(shù)學(xué)試題)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上不恒為零的可導(dǎo)函數(shù),對(duì)任意的x,SKIPIF1<0均滿(mǎn)足:SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】先得到SKIPIF1<0,再假設(shè)SKIPIF1<0為正整數(shù),利用累乘法求出SKIPIF1<0的解析式,再驗(yàn)證SKIPIF1<0不為正整數(shù)時(shí),SKIPIF1<0也符合題意.利用SKIPIF1<0的解析式容易判斷ABC,根據(jù)錯(cuò)位相減法求和可判斷D.【詳解】令SKIPIF1<0,得SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0為正整數(shù)時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),也符合題意,所以SKIPIF1<0.當(dāng)SKIPIF1<0不為正整數(shù)時(shí),經(jīng)驗(yàn)證SKIPIF1<0也滿(mǎn)足SKIPIF1<0,故SKIPIF1<0為任意實(shí)數(shù)時(shí),都有SKIPIF1<0.所以SKIPIF1<0,故A正確;SKIPIF1<0,故B正確;所以SKIPIF1<0,SKIPIF1<0,故C不正確;所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:ABD三、填空題:本大題共4小題,每小題5分,共20分。13.(上海市建平中學(xué)2023屆高三三模數(shù)學(xué)試題)函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0__________.【答案】SKIPIF1<0【分析】利用復(fù)合函數(shù)的求導(dǎo)法則以及商的導(dǎo)數(shù)運(yùn)算法可求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023·安徽安慶·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【分析】首先求出SKIPIF1<0,則問(wèn)題即為SKIPIF1<0,可同構(gòu)變形為SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,即可得到SKIPIF1<0,參變分離得到SKIPIF1<0,再令SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0的最大值,即可求出參數(shù)的取值范圍,即可得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以不等式SKIPIF1<0即為SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0即為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,SKIPIF1<0,因此由SKIPIF1<0等價(jià)于SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,故正實(shí)數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<015.(2023·江西南昌·統(tǒng)考二模)潮汐現(xiàn)象是地球上的海水在太陽(yáng)和月球雙重引力作用下產(chǎn)生的全球性的海水的周期性變化,人們可以利用潮汐進(jìn)行港口貨運(yùn).某港口具體時(shí)刻SKIPIF1<0(單位:小時(shí))與對(duì)應(yīng)水深SKIPIF1<0(單位:米)的函數(shù)關(guān)系式為SKIPIF1<0.某艘大型貨船要進(jìn)港,其相應(yīng)的吃水深度(船底與水面的距離)為7米,船底與海底距離不小于4.5米時(shí)就是安全的,該船于2點(diǎn)開(kāi)始卸貨(一次卸貨最長(zhǎng)時(shí)間不超過(guò)8小時(shí)),同時(shí)吃水深度以0.375米/小時(shí)的速度減少,該船8小時(shí)內(nèi)沒(méi)有卸完貨,要及時(shí)駛?cè)肷钏畢^(qū)域,則該船第一次停止卸貨的時(shí)刻為_(kāi)_____.【答案】6時(shí)【解析】令船底與海底距離為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以該船第一次停止卸貨的時(shí)刻為6時(shí).16.(天津市2023屆高三三模數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0存在_____個(gè)極值點(diǎn);若方程SKIPIF1<0有兩個(gè)不等實(shí)根,則SKIPIF1<0的取值范圍是___________【答案】4;SKIPIF1<0【分析】利用導(dǎo)數(shù)研究SKIPIF1<0的單調(diào)性和極值,作出SKIPIF1<0的圖象;由關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,得到函數(shù)SKIPIF1<0與SKIPIF1<0有一個(gè)交點(diǎn),利用圖象法求解.【詳解】對(duì)于函數(shù)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.而SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.而SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.作出SKIPIF1<0的圖象如圖所示:所以函數(shù)存在4個(gè)極值點(diǎn).解關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,即關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,SKIPIF1<0只有一個(gè)實(shí)數(shù)根SKIPIF1<0,所以關(guān)于SKIPIF1<0的方程SKIPIF1<0有一個(gè)非零的實(shí)數(shù)根,即函數(shù)SKIPIF1<0與SKIPIF1<0有一個(gè)交點(diǎn),橫坐標(biāo)SKIPIF1<0.結(jié)合圖象可得:SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:4;SKIPIF1<0.四、解答題:本大題共6小題,共70分,請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(2023·山東濰坊二模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的極值點(diǎn)的個(gè)數(shù).【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,而SKIPIF1<0,∴函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程SKIPIF1<0,級(jí)SKIPIF1<0.(2)所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0存在一個(gè)極值點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí).SKIPIF1<0,此時(shí)SKIPIF1<0沒(méi)有極值點(diǎn).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0或SKIPIF1<0,存在兩個(gè)極值點(diǎn);當(dāng)SKIPIF1<0時(shí),存在一個(gè)極值點(diǎn);當(dāng)SKIPIF1<0時(shí),沒(méi)有極值點(diǎn).18.(2023·福建莆田·統(tǒng)考二模)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的最小值為0,求a;(2)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0是增函數(shù),求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用函數(shù)最值與極值的關(guān)系推得SKIPIF1<0為SKIPIF1<0的一個(gè)極值點(diǎn),從而求得SKIPIF1<0,再代回檢驗(yàn)是否滿(mǎn)足題意即可得解;(2)先利用同構(gòu)法得到SKIPIF1<0,再構(gòu)造函數(shù),結(jié)合(1)中結(jié)論證得SKIPIF1<0,從而得到SKIPIF1<0,由此得解.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0的最小值為0,所以SKIPIF1<0為SKIPIF1<0的一個(gè)極值點(diǎn),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,檢驗(yàn):當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,滿(mǎn)足題意,綜上,SKIPIF1<0.(2)因?yàn)楹瘮?shù)SKIPIF1<0是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以方程SKIPIF1<0有解,由(1)可知,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.19.(2023·山東濰坊·統(tǒng)考一模)已知函數(shù)fx(1)討論fx(2)證明:當(dāng)x∈0,2吋,f【答案】(1)函數(shù)fx在0,+∞(2)證明見(jiàn)解析【分析】(1)求導(dǎo),再根據(jù)導(dǎo)函數(shù)的符號(hào)即可得出答案;(2)當(dāng)x∈0,2吋,fx≤gx,即證lnxelnx≤【詳解】(1)函數(shù)fx的定義域?yàn)?,+∞f'記?x=lnx所以當(dāng)0<x<1時(shí),?'當(dāng)x>1時(shí),?'x所以?x所以f'所以函數(shù)fx在0,+∞(2)原不等式為ex?1ln即證lnxeln設(shè)lx=x所以,當(dāng)x<1時(shí),l'x>0,lx單調(diào)遞增;當(dāng)x所以lx令tx當(dāng)0<x<1時(shí),t'x>0,tx單調(diào)遞增;當(dāng)所以t(x)且在x∈0,2上有l(wèi)nx<1x所以在x∈0,2時(shí),有20.(2023·山東泰安·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無(wú)遞減區(qū)間(2)SKIPIF1<0【解析】【分析】(1)求出函數(shù)SKIPIF1<0的定義域,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系可得出函數(shù)SKIPIF1<0的增區(qū)間和減區(qū)間;(2)設(shè)SKIPIF1<0,可知SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,對(duì)實(shí)數(shù)SKIPIF1<0的取值進(jìn)行分類(lèi)討論,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性,驗(yàn)證SKIPIF1<0對(duì)任意的SKIPIF1<0能否恒成立,綜合可得出實(shí)數(shù)SKIPIF1<0的取值范圍.【小問(wèn)1詳解】解:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以,SKIPIF1<0,則SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,所以,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無(wú)遞減區(qū)間.【小問(wèn)2詳解】解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0圖象為開(kāi)口向上,對(duì)稱(chēng)軸為SKIPIF1<0的拋物線的一部分,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,滿(mǎn)足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0有兩相異實(shí)根,設(shè)為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,SKIPIF1<0在SKIPIF1<0上不恒成立,不滿(mǎn)足題意.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.21.(2023·湖北·校聯(lián)考三模)已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,在SKIPIF1<0內(nèi)存在不等實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)答案見(jiàn)解析(2)證明見(jiàn)解析【詳解】(1)函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0二次函數(shù)SKIPIF1<0的對(duì)稱(chēng)軸是SKIPIF1<0①若SKIPIF1<0時(shí),在SKIPIF1<0上SKIPIF1<0,從而SKIPIF1<0,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0;②若SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0;單調(diào)遞減區(qū)間是SKIPIF1<0;(2)由對(duì)稱(chēng)性不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,由(1)得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,有SKIPIF1<0,SKIPIF1<0與已知條件矛盾;SKIPIF1<0時(shí),同理可推出矛盾.SKIPIF1<0,SKIPIF1<0,
要證明:SKIPIF1<0,只需證明:SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴只需證明:SKIPIF1<0又SKIPIF1<0,∴只需證明:SKIPIF1<0構(gòu)造函數(shù)SKIPIF1<0,
其中SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0成立SKIPIF1<0由SKIPIF1<0在定義域內(nèi)單調(diào)遞增得,SKIPIF1<0,即SKIPIF1<0成立.22.(2023·山東青島·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,圓SKIPIF1<0.(1)若SKIPIF1<0,寫(xiě)出曲線SKIPIF1<0與圓C的一條公切線的方程(無(wú)需證明);(2)若曲線SKIPIF1<0與圓C恰有三條公切線.(i)求b的取值范圍;(ii)證明:曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0SKIPIF1<0,對(duì)任意SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)(i)SKIPIF1<0;(ii)證明見(jiàn)解析.【解析】【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義表示出f(x)的切線方程,再根據(jù)該切線與圓相切列出方程,取方程的特殊解即可得到一條共切線的方程;(2)(i)設(shè)曲線SKIPIF1<0與圓SKIPIF1<0公切線SKIPIF1<0的方程為SKIPIF1<0,根據(jù)導(dǎo)數(shù)幾何意義求出k和m的關(guān)系,在根據(jù)圓的切線方程的幾何性質(zhì)得到關(guān)于k的方程,問(wèn)題轉(zhuǎn)化為討論該方程有三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)尚產(chǎn)業(yè)辦公空間裝修協(xié)議
- 游泳池裝修終止合同
- 化妝品店內(nèi)部裝修合同細(xì)則
- 海上夜游航線乘客協(xié)議
- 智能園區(qū)砂石運(yùn)輸服務(wù)合同
- 潤(rùn)滑油國(guó)內(nèi)運(yùn)輸協(xié)議
- 2025年度安防設(shè)備展覽會(huì)專(zhuān)業(yè)展臺(tái)搭建合同
- 醫(yī)療器械配送服務(wù)合同
- 物業(yè)小區(qū)翻新服務(wù)方案
- 外架工勞務(wù)合同范例
- (康德一診)重慶市2025屆高三高三第一次聯(lián)合診斷檢測(cè) 英語(yǔ)試卷(含答案詳解)
- 2025年福建泉州文旅集團(tuán)招聘24人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑行業(yè)砂石物資運(yùn)輸方案
- 腫瘤全程管理
- 融資報(bào)告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024風(fēng)能發(fā)電系統(tǒng)風(fēng)力發(fā)電場(chǎng)監(jiān)控系統(tǒng)通信第71部分:配置描述語(yǔ)言
- 污泥處置合作合同模板
- 腦梗死的護(hù)理查房
- 2025高考數(shù)學(xué)專(zhuān)項(xiàng)復(fù)習(xí):概率與統(tǒng)計(jì)的綜合應(yīng)用(十八大題型)含答案
- 2024-2030年中國(guó)紫蘇市場(chǎng)深度局勢(shì)分析及未來(lái)5發(fā)展趨勢(shì)報(bào)告
評(píng)論
0/150
提交評(píng)論