自動控制原理英文版課后全部 答案_第1頁
自動控制原理英文版課后全部 答案_第2頁
自動控制原理英文版課后全部 答案_第3頁
自動控制原理英文版課后全部 答案_第4頁
自動控制原理英文版課后全部 答案_第5頁
已閱讀5頁,還剩77頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ModuIe3

Problem3.1

(a)WhentheinputvariableistheforceF.HieinputvariableFandtheoutputvariableyare

relatedbytheequationobtainedbyequatingthemomentonthestick:

/尸=/工+2紇2

33dt

TakingLaplacetransforms,assuminginitialconditionstobezero,

F=-Y+-csY

33

leadingtothetransferfunction

Y3/k

*l+(4c/Z)s

wherethetimeconstantTisgivenby

4c

T=——

k

(b)WhenF=0

Theinputvariableisx,thedisplacementofthetoppointoftheupperspring.Theinput

variablexandtheoutputvariableyarerelatedbytheequationobtainedbythemomentonthe

stick:

k(q)/3+也2

333dt

TakingLaplacetransforms,assuminginitialconditionstobezero,

3Ax=(2女+4cs)Y

leadingtothetransferfunction

Y_3/2

―—l+(2c/Z)s

wherethetimeconstant丁isgivenby

2c

T=—

Im-

X^ole

*K

_k__k_Rc.

一五.~4c

Problem3.2P54

Determinetheoutputoftheopen-loopsystem

G(s)=」一

1+sT

tOtheinput

r(t)=t

Sketchbothinputandoutputasfunctionsoftime,anddeterminethesteady-stateerror

betweentheinputandoutput.ComparetheresultwiththatgivenbyFig3.7.

Solution:

Whiletheinputr(t)=t,useLaplacetransforms,

Inputr(s)=-^

s,

a

Outputc(s)=r(s)G(s)=2=a+丁

/.(l+Ts)/s?+1

IT)

thetime-domainresponsebecomes

c(t)=at-aT[\-^7j

Problem3.3

3.3ThemasslessbarshowninFig.P3.3hasbeendisplacedadistanceXoandissubjectedto

aunitimpulse§inthedirectionshown.Findtheresponseofthesystemfort>0andsketch

theresultasafunctionoftime.Confirmthesteady-stateresponseusingthefinal-value

theorem.

Solution:

Theequationobtainedbyequatingtheforce:

kx0+cx0=5Q)

TakingLaplacetransforms,assuminginitialconditiontobezero,

KXo+CsXo=l

leadingtothetransferfunction

X_1_1[

~F(^=K+Cs=C~K

SH

c

Thetime-domainresponsebecomes

]—t

x(t)=《e[

Thesteady-stateresponseusingthefinal-valuetheorem:

「「111

-ioK+CSSK

K(XQ+X)+CX=6。)=Kx()+X(K+Cs)=1;

,Yi-/rx0\-KXQ]

"Cs+KKC5+i

K

1—Kx-%

x(t)=,()

C

Accordingtothefinal-valuetheorem:

limx(r)=lims-X=lim——=0

.10ST。KC,

-5+1

Problem3.4

Solution:

Uftheinputisaunitstep,then

/?u)=-

s

leadingto,

C⑻=

(l+rs)s

takingtheinverseLaplacetransformgives,

-i

c(t)=l-er

asthesteady-stateoutputissaidtohavebeenachievedonceitiswithin1%ofthefinalvalue,

wecansolute"t"likethis,

c(t)=l-eT=99%xl(thefinalvalueis1)

hence,

-t

er=0.01(thetimeconstantr=10s)

t=4.605xr=46.05$

2.thenumericalvalueofthenumeratorofthetransferfunctiondoesn'taffecttheanswer.

Seethisequation,

If

C(s)A

G(s)=

R(s)\+TS

then

A

C(s)=

(1+TS)S

givingthetime-domainresponse

-t

c(t)=A(]-er)

asthefinalvalueisA,thesteady-slateoutputisachievedwhen,

-i

c(r)=A(l-e7)=Ax99%

solutetheequation,

t=4.605r=46.05s

theresultmakenodifferentfromthatabove,sowesaidthatthenumericalvalueofthe

numeratorofthetransferfunctiondoesn'taffecttheanswer.

Ifa<l,asthetimeincrease,thetwolineswon'tcross.Inthesteadystatetheoutputlagsthe

inputbyatimebymorethanthetimeconstantT.

Thesteadyerrorwillbenegativeinfinite.

R(t)

t

Ifa=l,asthetimeincrease,thetwolineswillbeparallel.ItisassameasFig3.7.

Ifa>l,asthetimeincrease,thetwolineswillcross.Inthesteadystatetheoutputlagsthe

inputbyatimebylessthanthetimeconstantT.

Thesteadyerrorwillbepositiveinfinite.

Kt)

C(t)

Problem3.5

Solution:

R(S)=4+-.Y(S)=--s-+-6--=--29-1-6-1--1-45-

sss2-(55+1)ss25s+1

...),(,)=6/—29+29e"5

sothesteady-stateerroris29(-30).TDconformtheresult:

limy(r)=lim(6r-29+29')=oo;

5+6

limy(r)=limy(6)=limY(s)=lim=oo.

foes->0S->0S->0S(5S+1)

e”=lime(f)=lim5-E(S)=lim5[F(5)-/?(S)]

TOOST。5—>0

=limS(G(S)-l]/?(S)=limS-(———1)-(4-+-)

sf。5S+1S2S

=-30

Therefore,thesolutionisbasicallycorrect.

Problem3.6

2y+3y=x

sinceinputisofconstantamplitudeandvariablefrequency,itcanberepresentedas:

X=AJ

asweknow,theoutputshouldbeasinusoidalsignalwiththesamefrequencyoftheinput,it

canalsoberepresentedas:

"DI

y=y()e

hence

2汝匕,“+3兒/皿=4膽網(wǎng)

A=_L_

A.3+2/。

2vv

69=-tan——

3

ItsDC(w—>0)valueis

Requirement熱卜捌

3

—>vv=—

2

whilephaselagoftheinput:0=-tan*11=

4

Problem3.7

Onedefinitionofthebandwidthofasystemisthefrequencyrangeoverwhichtheamplitude

oftheoutputsignalisgreaterthan70%oftheinputsignalamplitudewhenasystemis

subjectedtoaharmonicinput.Findarelationshipbetweenthebandwidthandthetime

constantofafirst-ordersystem.Whatisthephaseangleatthebandwidthfrequency?

Solution:

Fromtheequation3.41

A=Q,20.7%(1)

and69>0(2)

sothebandwidthB(o=1221

T

fromtheequation3.43

1-1

thephaseangleZc0=-tantyr=-tan1.02=—

Problem3.8

3.8Solution

AccordingtogeneralizedtransferfunctionofFirst-OrderFeedbackSystems

C_KGK

R1+KGH1+K+TS

<*ethesteadystateoftheoutputofthissystemis2.5V.

ifs—>0,——>=—.Fromthis,wecangetthevalueofK,thatisK=~-

R1043

Sinceweknowthatthestepinputis10V,takingLaplacetransforms,theinputis_.

S

Thentheoutputisfollowed

10x%

C(s)=

S1+%+TS

TakingreverseLaplacetransforms,

T

C=2.5-2.5e%r=2.5(1-e-生)

Fromthefigure,wecanseethatwhenthetimereached3s,thevalueofoutputis86%ofthe

steadystate.Sowecanknow

/-3=—2=—3=(—2)*4—n匯=82

外3r9,

/3r

4,/3r

l-e-=0.864|,=3=>r=2

31

Thetransferfunctionis

12+8s4+65

Let12+8s=0,wecangetthepole,thatiss=-1.5-2/3

Problem3.9Page55

Solution:

Thetransferfunctioncanberepresented,

G(s)=――—=―~—?―_-

斗(s)匕“(s)匕(S)

While,

一(S)1

匕“(s)1+sRC

Leadingtothefinaltransferfunction,

__________]

G(s)=

1+3SRC+(SRC)2

Andthereason:

thesecondsimplelagcompensationnetworkcanberegardedastheloadofthefirstone,and

accordingtoLoadEffect,theloadaffectstheprimaryrelationship;sothetransferfunctionof

thecombinationdoesn'tequaltheproductofthetwoindividuallagtransferfunction

ModuIe4

Problem4.1

4.1Theclosed-looptransferfunctionis

1()

C——1()

R-l+s(^6)-S2+65+10

Comparingwiththegeneralizedsecond-ordersystem,weget

叱,=加

2EWn=6

?3710

E=

10

Problem4.3

4.3Consideringthespringrisexandthemassrisey.UsingNewton'ssecondlawofmotion

d(x-y)

iny=K(x-y)+c

dt

TakingLaplacetransforms,assumingzeroinitialconditions

mYs2=KX-KY+csX-csY

resultinginthetransferfuncitionwhere

Ycs+K

—=

Xms2+cs+K

And

c=1.26*IO,

Problem4.4

Solution:

Theclosed-looptransferfunctionis

—K?--1--

cSS+2K

~R工K.1-S2+2S+K

1?H■

SS+2

Comparingtheclosed-looptransferfunctionwiththegeneralizedform.

C

R2+2匏/+而

itisseenthat

K=

Andthat

2g=2;§=蘇

Thepercentageovershootistherefore

PO=100^=100/,^

Where

PO<10%

Whensolved,gives1.2WK(2.86)

WhenKtakesthevalue1.2,thepolesofthesystemaregivenby

?+2^+1.2=0

Whichgives

=-l±O.45js=-l±1.36j

Im

0.45

Re

-0.45

O

Problem4.5

4.5Aunity-feedbackcontrolsystemhastheforward-pathtransferfunction

S(s+10)

Findtheclosed-looptransferfunction,anddevelopexpressionsfbrthedampingratio

AnddampednaturalfrequencyintermofKPlottheclosed-looppolesonthecomplex

PlanefbrK=0,10,25,50,1OO.ForeachvalueofKcalculatethecorrespondingdamping

ratioanddampednaturalfrequency.Whatconclusionscanyoudrawfromtheplot?

Solution:

KS)

SubstituteG(s)=intothefeedbackformula:①(s)=.Andinunit

s(s+10)1+”G(S)

feedbacksystemH=1.

K

Resultin:0(s)=—:

d+iOs+K

Sothedampednaturalfrequency①“=yfK,

.105

dJampingratio^=-=-y=.

Thecharacteristicequationiss2+10S+K=0.

WhenK<25,S=-5±V25-/C;

WhileK>25,s=-5±WK-25;

ThevalueofCOnand(correspondingtoKarelistedasfollows.

K0102550100

Pole1S,0-5+V15-5-5+5i-5+5?

-10-5-Ji?-5-5-5i

Pole2S2

-5-5-73)

0而55應(yīng)10

qooV151V050.5

PlotthecomplexplanefbreachvalueofK:

im

axis

V-5+逃

k-X0O

n

k=50

T。-5-后-5-5+而

—X-X——?real

k"0k"10k-lOk-0axis

k-25

Xk-50

X

Wecanconcludefromtheplot.

Whenk<25,polesdistributeontherealaxis.ThesmallervalueofKis,thefartherpolesis

awayfrompoint-5.ThelargervalueofKis,thenearerpolesisawayfrompoint-5.

Whenk>25,polesdistributeawayfromtherealaxis.ThesmallervalueofKis,thefurther

(nearer)polesisawayfrompoint-5.ThelargervalueofKis,thenearer(farther)polesis

awayfrompoint-5.Andallthepolesdistributeonalineparallelsimaginaryaxis,intersect

realaxisonthepole-5.

Probleni4.6

TakingLaplacetransforms,assumingzeroinitialconditions,reducesthisequationto

Vb_RLs

Ls+R+RLCs?

Sincetheinputisaconstantcurrenti(),so

1

then,

RL

C(s)=匕=

Ls+R+RLCs2

Applyingthefinal-valuetheoremyields

limc(/)

r—>QO'Z

indicatingthatthesteady-statevoltageacrossthecapacitorCeventuallyreachesthe

zero.resultinginfullerror.

Problem4.7

4.7Provethatforanunderdampedsecond-ordersystemsubjecttoastepinput,the

percentageovershootabovethesteady-stateoutputisafunctiononlyofthedamping

ratio.

Fig.4.7

Solution

Theoutputcanbegivenby

2

C(s)=--~3-

s(s+2血6+0)

________s+2g(1)

丁(s+S>+q2(Y)

thedampednaturalfrequency%canbedefinedas

=⑵

substitutingaboveresultsin

l_____s+g____________眄____.

C(5)=S(s+血)2+02(s+「y“)2+%2-

takingtheinversetransformyields

13/

C?)=l-sinQ"+0)

where(4)

tan^=£?

themaximumoutputis

sin(叫+。)

7171(5)

t-=-

sothemaximumis

c(o)=l+e-%/F7

thepercentageovershootistherefore

PO=100"*1必7

Problem4.8

Solutionto4.8:

Consideringthemassmdisplacedadistancexfromitsequilibriumposition,

thefree-bodydiagramofthemasswillbeasshownasfollows.

UsingNewton'ssecondlawofmotion,

p-2kx-cx=tnx

mx+ex+2kx=p

TakingLaplacetransforms,assumingzeroinitialconditions,

X{ms2+cs+2k)=P

resultsinthetransferfunction

X/P=(1//H)/(52+(c/m)s+2攵/m)

=(2/k)(2k/m)(s2+(c/m)s+2khn)

Aswesee

X(ms2+cs+2k)=P

AsPisconstant

SoXoc——

ms+cs+2Z

When5=--=-6.25xIO-5

2m

(ms2+cs+2k}=105

\/min

Xg=k0」

Thisisasecond-ordertransferfunctionwhere

co:=2k/m

and

g=c/2wnm=c/212km

Thedampednaturalfrequencyisgivenby

2

cod=conJi—--N2klmy/l-c/Skni

=42k/m-(c/2m)2

Usingthegivendata,

(o?=V2X5X104/2X106=7(X05=0.2236

250

=2.7950xlO-4

2X2X106XV0X)5

%=0.2236x-(2.7950x1O_4)2=0.2236

Withthesedatawecandrawapicture

71

—=14.050

A

—=16000

7;=4.6^.=73600

mcod

*?*人x仁)~^~「明(一弧sin(odtp+(Ddcoso/p)=0

?*-tan叫=j=7.03-=0.02加

Problem4.10

4.10

solution:

ThesystemissimilartotheoneinthebookonPAGE58toPAGE63.Thedifferenceisthe

connectionofthespring.Sothetransferfunctionis

嗎2

%d+23.5+嗎2

必_k.k&N

2

ed~RJs+RCs+(R+kuk,nN)kp

J=N3+L,C=N&+C「,

NR

dampingratio

2KK.KJ

ButthevalueofJisdifferent,becausethereisaspringconnected.

Becauseoffinal-valuetheorem,

%=紇

為一24

ModuIe5

Problem5.4

5.4Theclosed-looptransferfunctionofthesystemmaybewrittenas

10K

C=S2+6S+10=JL-1°(K+1)

2

R|+10K1+KS+6S+10A-+10

S2+6S+10

Theclosed-looppolesarethesolutionsofthecharacteristicequation

SL±J36-4(10+10K)=_3±Q^

2

叱,=J10(l+K)

2EjlO(l+K)=6

110(1+K)

Inordertostudythestabilityofthesystem,thebehavioroftheclosed-looppoleswhenthe

gainKincreasesfromzerotoinfintewillbeobserved.Sowhen

K.=2E=—S=-3土而/

'10

K,=10E=S=-3±VK)TJ

2110

AT,=20E=^^-S=-3±V20Tj

370

雙擊下面可以看到原圖

Re

Problem5.5

Solution

Theclosed-looptransferfunctionis

K

_K_K

R—K?+A:(l+a.v)s2+aKs+K

S

Comparingtheclosed-looptransferfunctionwiththegeneralizedform,

Rs2+2^co,,s+co^

Leadingto

con=y/~K

EU4K

Thepercentageovershootistherefore

PO=100e"=40%

Producingtheresult

4=0.869(0.28)

Andthepeaktime

=4s

4Jl-產(chǎn)

Leadingto

4=1.586(0.82)

Problems.7

5.7ProvethattherisetimeTrofasecond-ordersystemwithaunitstepinputisgivenby

1CM1_J1_72

。=晟tan“襄=£tan-1—~~

Plottheriseagainstthedampingratio.

Solution:

n,

Accordingto(4.33):c(t)=l-e~^(cosco.t+,^sincodt).4.33

Whent=Tr,c(t)=l.substituec(t)=1into(4.33)

Producingtheresult

1CM1-J_2

T,,tan-'=晟tan」一%一

Plottherisetimeagainstthedampingratio:

Problem5.9

Solutionto5.9:

Asweknowthatthesystemistheopen-looptransferfunctionofaunity-feedbackcontrol

system.

SoGH(S)=G(S)

Givenas

/G-2)(S+5)

Theclose-looptransferfunctionofthesystemmaybewrittenas

G(s)________4K______

R\'1+G〃(s)(s-2)(s+5)+4K

Thecharacteristicequationis

(s-2)(s+5)+4K=Ons2+3s+4K-io=o

AccordingtotheRouth'smethod,theRouth'sarraymustbeformedasfollow

5214/C-10

s30

504K-10

Forthereisnoclosed-looppolestotherightoftheimaginaryaxis

4/C-10>0=>K>2.5

GiventhatQ=0.5

con=J4K-10

3

,=./=>K=4.75

2J4K-10

WhenK=0,therootare

s=+2,-5

Accordingtothecharacteristicequation,thesolutionsare

whileK<3.0625,wehaveoneortwosolutions,allareintegralnumber.

Orwewillhavesolutionswithimaginarynumber.

Sowecandraw

□Open-looppoles

Closed-looppoles

Problems.10

5.10

solution:

?=0.6

wn=2rad/s

accordingto

/CMi

(c)=1-I2sin(w/+</>)=-

,1一7z

eT-sin(16+0)=O.4tan*

finally,tisdelaytime:

bl.23s(0.67)

Module6

Problem6.3

FirstweassumethedisturbanceDtobezero:

e=R-C

101

C=Ke

5+1s

Hence:'=")

R10K+s(s+l)

ThenwesettheinputRtobezero:

10e_10

C=(Ke+O)?

s(s+l)~D~~10K+s(s+l)

Addingthesetworesultstogether:

3-R12D

10K+s(s+l)10K+s(s+l)

R(s)=";D(s)W

_5+110_5-9

'~10Ks+V(s+l)-10KS+S2(S+I)-100^+52(5+1)

thesteady-stateerror:

c~—0rc—9

%=lims?c=lim?'、~:=lim—5-^=-0.09

DS->OS'+S~+100SST0S+S+100

Problem6.4

Determinethedisturbancerejectionratio(DRR)forthesystemshowninFigP.6.4

+

fig.P.6.4

solution:

fromthediagramwecanknow:

c=0.05

sowecangetthat

DRR=(△◎”)*=]+=]+2^211

(AO〃)CLcR0.05

21

soc=0.025,DRR=9

O.Lv+0.05~0.055+0.025

Problem6.5

6.5Solution

Forthepurposesofdeterminingthesteady-stateenorofthesystem,weshouldgetto

knowtheeffectoftheinputandthedisturbancealongwhentheotherwillbeassumedtobe

zero.

Firsttosimplifytheblockdiagramtothefollowingpatte亡

Allowingthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas

%_20

6?,+2s+20

Q20020*2二40

01-JS2+2S+20-JS2+2S+20S~(Jr+2s+20).s

AccordingtotheequationE=R-C:

%「($)=lim[%(s)—%(s)]=lim[-(l)]=lim?"+2)=。2

°八〃go%',s2+2s+20蘇TOJd+2s+20

問題;

1.系統(tǒng)型為2,對于階躍輸入,穩(wěn)態(tài)誤差為0.

2.終值定理寫的不對。

andthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas

。02=__1__

Js2+2s+20

g______'_____T=______-_____

02ZS-2+2.V+20".y(Jr+2.v+20)

Accordingtotheequatione=-c

essf(5)=lim[—%($)]=lim[sJ=lim十--=-0.05

s-八,四。1八£一。1Jr+2S+20^JS2+2S+20

sothestateerrorshouldbe:ess=essr+ess/=0.2-0.05=0.15

Problem6.9

Solution:

Thetransferfunctionoftheinsideloopis

10

s(s+l)=1()

=一1+10-―1+(10k+1)5

s(s+1)

Andthetransferfunctionofthewholesystemis

C__________10________

R~52+(10^+1)5+10

Wegetthevalueofand0fromtheaboveequation:

wn=Vio

10&+1

AndthevalueofPOis

PO=lOOe-s/G

Accordingtotheformerequation:

PO=10%=f=0.6=嗎±1

2V10

Thefinalresultis

^=i.2Vio-i=O28

10

Module7

Problem7.5

Determinetheclosed-looptransferfunctionandthepercentageovershootforasystem

describedbythepole-zeromapshowninFig.P7.5,assumingthesteadystategainofthe

closed-looptransferfunctionisunity.

a1

SOLUTION:

Fromthefigure,wecangettheBodeformfunction

C_l+ST

元=%:+20/?!?1

r=13,=J(-2/+F=V5-g=-2

_?,/-=0.894^0.9/=—=-

網(wǎng)2

FromFig.7.6onpage117,wecanseethat,undertheeffectofclosed-loopzero,while

3

C=0.9and/=—,thePercentovershootislessthan1%.

2

C_____________1___________

?一(l+sr)(s2/o:+27s/q+l)

-l/r=-3=>r=l/3

=2,<y?=75?2.24n7=2/石*0.894,

C_15

--(s+3)(s?+4s+5)

Problem7.7

7.7Asystemhasatransferfunctionthatmaybewrittenintheform

C=1

R(5+l)(52+as+b)

Itisknownthatfbrthesecond-orderterm,4=0.2.Investigationoftheunitstepresponse

revealsanovershootof5%oftheinput.Calculatetheconstantsaandb,plottheclosed-loop

systempolesonthecomplexplane,andcommentonthereducabilityofthesystem.

Solution:

Thethird-ordersystemwithq=0.2wouldhaveanovershootof5%iftheadditionalpole

werelocatedsuchthattheparameterp=2.25.

Andfromtheknownparameters,1/=1,

then

=2.25(看圖似不超過2.1)

Thetime-domainresponseparametersmaybecalculateas

con=4rad/sand?=0.2

So

a=2〃"=1.6andb=冠=16

thenwewillplotclosed-loopsystempolesonthecomplexplane:

Theotherrealpolecannotbeneglected,theeffectofthereal-axispolecontributiontothe

responsewillbetomakeitmoresluggish.

Problem7.9

Solution:

Examinationoftheplantrevealsthefollowingtime-domainparameters:

(o=2radIsJ=1-=/?;

nT

ExaminingFig7.6,thesystemwith=1wouldhaveanovershootof5%ifthezerois

locatedsuchthattheparametery=0.6.Thisrelatedtotheparameterbby

b=l.2

Iftheinputisaunitstep,thesteady-stateoutputmaybeobtainedbyusingthefinal-value

theorem

$+12

limc(r)=limsC(s)=lim;=0.3

mo5->os->os2+4s+4

Asthereisa5%overshoot,themaximumvalueofthesystemis

(l+5%)xlimc(t)=0.3x105%=0.315

Problem7.11

k(s+1)

A0(S)==TT-=?S=_1;

l+GH]?k(s+l)(k+\)s+k

s

.Gk

B(p(s)==;nozeros;

l+GHl+k(s+l)

(s+1)(5+2)

C0($)=G=s(s+3)=______(s+l)(s+2)(s+4)______

°S~l+GH~?(s+l)(s+2)(s+5)-s(s+3)(s+4)+(s+l)(s+2)(s+5)

s(s+3)(s+4)

G5(52+25+10)

D(s+1);s=0,-l+3i;

OG)=2

l+GH1+(S+1)(S2:2S+10)5+(5+l)(5+25+10)

ModuIe8

Problem8.3

C_GG

8.3(1)

不一l+GH-1+G'

Resultingin

GG

G書上有結(jié)果(8.62)G=

1+(H+1)1+G(H-1)

1°01

TakeG=—,H=into

5+2s+55+1

Wegetthat

105+10

G=—:

s'+3A1?—3s+5

⑵AccordingtoTable8.1

K=limG(5)=2

It'satype0system,thesteady-stateerrorduetoaunitstepinput

]

e&=l+K-5

(3)Foraunitstepinput

RG)=L

Accordingto8.59

1+G(H-1)1+2*(1-1)1

◎(f)=1日——

.v->0\+GH1+2*13

Pmblem8.3

Solution

G⑸=7^7?H(S)==

Hence,theclosed-looptransferfunctionis

10

G(s)二s,+2s+510(5+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論