




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ModuIe3
Problem3.1
(a)WhentheinputvariableistheforceF.HieinputvariableFandtheoutputvariableyare
relatedbytheequationobtainedbyequatingthemomentonthestick:
/尸=/工+2紇2
33dt
TakingLaplacetransforms,assuminginitialconditionstobezero,
F=-Y+-csY
33
leadingtothetransferfunction
Y3/k
*l+(4c/Z)s
wherethetimeconstantTisgivenby
4c
T=——
k
(b)WhenF=0
Theinputvariableisx,thedisplacementofthetoppointoftheupperspring.Theinput
variablexandtheoutputvariableyarerelatedbytheequationobtainedbythemomentonthe
stick:
k(q)/3+也2
333dt
TakingLaplacetransforms,assuminginitialconditionstobezero,
3Ax=(2女+4cs)Y
leadingtothetransferfunction
Y_3/2
―—l+(2c/Z)s
wherethetimeconstant丁isgivenby
2c
T=—
Im-
X^ole
*K
_k__k_Rc.
一五.~4c
Problem3.2P54
Determinetheoutputoftheopen-loopsystem
G(s)=」一
1+sT
tOtheinput
r(t)=t
Sketchbothinputandoutputasfunctionsoftime,anddeterminethesteady-stateerror
betweentheinputandoutput.ComparetheresultwiththatgivenbyFig3.7.
Solution:
Whiletheinputr(t)=t,useLaplacetransforms,
Inputr(s)=-^
s,
a
Outputc(s)=r(s)G(s)=2=a+丁
/.(l+Ts)/s?+1
IT)
thetime-domainresponsebecomes
c(t)=at-aT[\-^7j
Problem3.3
3.3ThemasslessbarshowninFig.P3.3hasbeendisplacedadistanceXoandissubjectedto
aunitimpulse§inthedirectionshown.Findtheresponseofthesystemfort>0andsketch
theresultasafunctionoftime.Confirmthesteady-stateresponseusingthefinal-value
theorem.
Solution:
Theequationobtainedbyequatingtheforce:
kx0+cx0=5Q)
TakingLaplacetransforms,assuminginitialconditiontobezero,
KXo+CsXo=l
leadingtothetransferfunction
X_1_1[
~F(^=K+Cs=C~K
SH
c
Thetime-domainresponsebecomes
]—t
x(t)=《e[
Thesteady-stateresponseusingthefinal-valuetheorem:
「「111
-ioK+CSSK
K(XQ+X)+CX=6。)=Kx()+X(K+Cs)=1;
,Yi-/rx0\-KXQ]
"Cs+KKC5+i
K
1—Kx-%
x(t)=,()
C
Accordingtothefinal-valuetheorem:
limx(r)=lims-X=lim——=0
.10ST。KC,
-5+1
Problem3.4
Solution:
Uftheinputisaunitstep,then
/?u)=-
s
leadingto,
C⑻=
(l+rs)s
takingtheinverseLaplacetransformgives,
-i
c(t)=l-er
asthesteady-stateoutputissaidtohavebeenachievedonceitiswithin1%ofthefinalvalue,
wecansolute"t"likethis,
c(t)=l-eT=99%xl(thefinalvalueis1)
hence,
-t
er=0.01(thetimeconstantr=10s)
t=4.605xr=46.05$
2.thenumericalvalueofthenumeratorofthetransferfunctiondoesn'taffecttheanswer.
Seethisequation,
If
C(s)A
G(s)=
R(s)\+TS
then
A
C(s)=
(1+TS)S
givingthetime-domainresponse
-t
c(t)=A(]-er)
asthefinalvalueisA,thesteady-slateoutputisachievedwhen,
-i
c(r)=A(l-e7)=Ax99%
solutetheequation,
t=4.605r=46.05s
theresultmakenodifferentfromthatabove,sowesaidthatthenumericalvalueofthe
numeratorofthetransferfunctiondoesn'taffecttheanswer.
Ifa<l,asthetimeincrease,thetwolineswon'tcross.Inthesteadystatetheoutputlagsthe
inputbyatimebymorethanthetimeconstantT.
Thesteadyerrorwillbenegativeinfinite.
R(t)
t
Ifa=l,asthetimeincrease,thetwolineswillbeparallel.ItisassameasFig3.7.
Ifa>l,asthetimeincrease,thetwolineswillcross.Inthesteadystatetheoutputlagsthe
inputbyatimebylessthanthetimeconstantT.
Thesteadyerrorwillbepositiveinfinite.
Kt)
C(t)
Problem3.5
Solution:
R(S)=4+-.Y(S)=--s-+-6--=--29-1-6-1--1-45-
sss2-(55+1)ss25s+1
...),(,)=6/—29+29e"5
sothesteady-stateerroris29(-30).TDconformtheresult:
limy(r)=lim(6r-29+29')=oo;
5+6
limy(r)=limy(6)=limY(s)=lim=oo.
foes->0S->0S->0S(5S+1)
e”=lime(f)=lim5-E(S)=lim5[F(5)-/?(S)]
TOOST。5—>0
=limS(G(S)-l]/?(S)=limS-(———1)-(4-+-)
sf。5S+1S2S
=-30
Therefore,thesolutionisbasicallycorrect.
Problem3.6
2y+3y=x
sinceinputisofconstantamplitudeandvariablefrequency,itcanberepresentedas:
X=AJ
asweknow,theoutputshouldbeasinusoidalsignalwiththesamefrequencyoftheinput,it
canalsoberepresentedas:
"DI
y=y()e
hence
2汝匕,“+3兒/皿=4膽網(wǎng)
A=_L_
A.3+2/。
2vv
69=-tan——
3
ItsDC(w—>0)valueis
Requirement熱卜捌
3
—>vv=—
2
whilephaselagoftheinput:0=-tan*11=
4
Problem3.7
Onedefinitionofthebandwidthofasystemisthefrequencyrangeoverwhichtheamplitude
oftheoutputsignalisgreaterthan70%oftheinputsignalamplitudewhenasystemis
subjectedtoaharmonicinput.Findarelationshipbetweenthebandwidthandthetime
constantofafirst-ordersystem.Whatisthephaseangleatthebandwidthfrequency?
Solution:
Fromtheequation3.41
A=Q,20.7%(1)
and69>0(2)
sothebandwidthB(o=1221
T
fromtheequation3.43
乃
1-1
thephaseangleZc0=-tantyr=-tan1.02=—
Problem3.8
3.8Solution
AccordingtogeneralizedtransferfunctionofFirst-OrderFeedbackSystems
C_KGK
R1+KGH1+K+TS
<*ethesteadystateoftheoutputofthissystemis2.5V.
ifs—>0,——>=—.Fromthis,wecangetthevalueofK,thatisK=~-
R1043
Sinceweknowthatthestepinputis10V,takingLaplacetransforms,theinputis_.
S
Thentheoutputisfollowed
10x%
C(s)=
S1+%+TS
TakingreverseLaplacetransforms,
T
C=2.5-2.5e%r=2.5(1-e-生)
Fromthefigure,wecanseethatwhenthetimereached3s,thevalueofoutputis86%ofthe
steadystate.Sowecanknow
/-3=—2=—3=(—2)*4—n匯=82
外3r9,
/3r
4,/3r
l-e-=0.864|,=3=>r=2
31
Thetransferfunctionis
12+8s4+65
Let12+8s=0,wecangetthepole,thatiss=-1.5-2/3
Problem3.9Page55
Solution:
Thetransferfunctioncanberepresented,
G(s)=――—=―~—?―_-
斗(s)匕“(s)匕(S)
While,
一(S)1
匕“(s)1+sRC
Leadingtothefinaltransferfunction,
__________]
G(s)=
1+3SRC+(SRC)2
Andthereason:
thesecondsimplelagcompensationnetworkcanberegardedastheloadofthefirstone,and
accordingtoLoadEffect,theloadaffectstheprimaryrelationship;sothetransferfunctionof
thecombinationdoesn'tequaltheproductofthetwoindividuallagtransferfunction
ModuIe4
Problem4.1
4.1Theclosed-looptransferfunctionis
1()
C——1()
R-l+s(^6)-S2+65+10
Comparingwiththegeneralizedsecond-ordersystem,weget
叱,=加
2EWn=6
?3710
E=
10
Problem4.3
4.3Consideringthespringrisexandthemassrisey.UsingNewton'ssecondlawofmotion
d(x-y)
iny=K(x-y)+c
dt
TakingLaplacetransforms,assumingzeroinitialconditions
mYs2=KX-KY+csX-csY
resultinginthetransferfuncitionwhere
Ycs+K
—=
Xms2+cs+K
And
c=1.26*IO,
Problem4.4
Solution:
Theclosed-looptransferfunctionis
—K?--1--
cSS+2K
~R工K.1-S2+2S+K
1?H■
SS+2
Comparingtheclosed-looptransferfunctionwiththegeneralizedform.
C
R2+2匏/+而
itisseenthat
K=
Andthat
2g=2;§=蘇
Thepercentageovershootistherefore
PO=100^=100/,^
Where
PO<10%
Whensolved,gives1.2WK(2.86)
WhenKtakesthevalue1.2,thepolesofthesystemaregivenby
?+2^+1.2=0
Whichgives
=-l±O.45js=-l±1.36j
Im
0.45
Re
-0.45
O
Problem4.5
4.5Aunity-feedbackcontrolsystemhastheforward-pathtransferfunction
S(s+10)
Findtheclosed-looptransferfunction,anddevelopexpressionsfbrthedampingratio
AnddampednaturalfrequencyintermofKPlottheclosed-looppolesonthecomplex
PlanefbrK=0,10,25,50,1OO.ForeachvalueofKcalculatethecorrespondingdamping
ratioanddampednaturalfrequency.Whatconclusionscanyoudrawfromtheplot?
Solution:
KS)
SubstituteG(s)=intothefeedbackformula:①(s)=.Andinunit
s(s+10)1+”G(S)
feedbacksystemH=1.
K
Resultin:0(s)=—:
d+iOs+K
Sothedampednaturalfrequency①“=yfK,
.105
dJampingratio^=-=-y=.
Thecharacteristicequationiss2+10S+K=0.
WhenK<25,S=-5±V25-/C;
WhileK>25,s=-5±WK-25;
ThevalueofCOnand(correspondingtoKarelistedasfollows.
K0102550100
Pole1S,0-5+V15-5-5+5i-5+5?
-10-5-Ji?-5-5-5i
Pole2S2
-5-5-73)
0而55應(yīng)10
qooV151V050.5
PlotthecomplexplanefbreachvalueofK:
im
axis
V-5+逃
k-X0O
n
k=50
T。-5-后-5-5+而
—X-X——?real
k"0k"10k-lOk-0axis
k-25
Xk-50
X
Wecanconcludefromtheplot.
Whenk<25,polesdistributeontherealaxis.ThesmallervalueofKis,thefartherpolesis
awayfrompoint-5.ThelargervalueofKis,thenearerpolesisawayfrompoint-5.
Whenk>25,polesdistributeawayfromtherealaxis.ThesmallervalueofKis,thefurther
(nearer)polesisawayfrompoint-5.ThelargervalueofKis,thenearer(farther)polesis
awayfrompoint-5.Andallthepolesdistributeonalineparallelsimaginaryaxis,intersect
realaxisonthepole-5.
Probleni4.6
TakingLaplacetransforms,assumingzeroinitialconditions,reducesthisequationto
Vb_RLs
Ls+R+RLCs?
Sincetheinputisaconstantcurrenti(),so
1
then,
RL
C(s)=匕=
Ls+R+RLCs2
Applyingthefinal-valuetheoremyields
limc(/)
r—>QO'Z
indicatingthatthesteady-statevoltageacrossthecapacitorCeventuallyreachesthe
zero.resultinginfullerror.
Problem4.7
4.7Provethatforanunderdampedsecond-ordersystemsubjecttoastepinput,the
percentageovershootabovethesteady-stateoutputisafunctiononlyofthedamping
ratio.
Fig.4.7
Solution
Theoutputcanbegivenby
2
C(s)=--~3-
s(s+2血6+0)
________s+2g(1)
丁(s+S>+q2(Y)
thedampednaturalfrequency%canbedefinedas
=⑵
substitutingaboveresultsin
l_____s+g____________眄____.
C(5)=S(s+血)2+02(s+「y“)2+%2-
takingtheinversetransformyields
13/
C?)=l-sinQ"+0)
where(4)
tan^=£?
themaximumoutputis
sin(叫+。)
7171(5)
t-=-
sothemaximumis
c(o)=l+e-%/F7
thepercentageovershootistherefore
PO=100"*1必7
Problem4.8
Solutionto4.8:
Consideringthemassmdisplacedadistancexfromitsequilibriumposition,
thefree-bodydiagramofthemasswillbeasshownasfollows.
UsingNewton'ssecondlawofmotion,
p-2kx-cx=tnx
mx+ex+2kx=p
TakingLaplacetransforms,assumingzeroinitialconditions,
X{ms2+cs+2k)=P
resultsinthetransferfunction
X/P=(1//H)/(52+(c/m)s+2攵/m)
=(2/k)(2k/m)(s2+(c/m)s+2khn)
Aswesee
X(ms2+cs+2k)=P
AsPisconstant
SoXoc——
ms+cs+2Z
When5=--=-6.25xIO-5
2m
(ms2+cs+2k}=105
\/min
Xg=k0」
Thisisasecond-ordertransferfunctionwhere
co:=2k/m
and
g=c/2wnm=c/212km
Thedampednaturalfrequencyisgivenby
2
cod=conJi—--N2klmy/l-c/Skni
=42k/m-(c/2m)2
Usingthegivendata,
(o?=V2X5X104/2X106=7(X05=0.2236
250
=2.7950xlO-4
2X2X106XV0X)5
%=0.2236x-(2.7950x1O_4)2=0.2236
Withthesedatawecandrawapicture
71
—=14.050
A
—=16000
7;=4.6^.=73600
mcod
*?*人x仁)~^~「明(一弧sin(odtp+(Ddcoso/p)=0
?*-tan叫=j=7.03-=0.02加
Problem4.10
4.10
solution:
ThesystemissimilartotheoneinthebookonPAGE58toPAGE63.Thedifferenceisthe
connectionofthespring.Sothetransferfunctionis
嗎2
%d+23.5+嗎2
必_k.k&N
2
ed~RJs+RCs+(R+kuk,nN)kp
J=N3+L,C=N&+C「,
NR
dampingratio
2KK.KJ
ButthevalueofJisdifferent,becausethereisaspringconnected.
Becauseoffinal-valuetheorem,
%=紇
為一24
ModuIe5
Problem5.4
5.4Theclosed-looptransferfunctionofthesystemmaybewrittenas
10K
C=S2+6S+10=JL-1°(K+1)
2
R|+10K1+KS+6S+10A-+10
S2+6S+10
Theclosed-looppolesarethesolutionsofthecharacteristicequation
SL±J36-4(10+10K)=_3±Q^
2
叱,=J10(l+K)
2EjlO(l+K)=6
110(1+K)
Inordertostudythestabilityofthesystem,thebehavioroftheclosed-looppoleswhenthe
gainKincreasesfromzerotoinfintewillbeobserved.Sowhen
K.=2E=—S=-3土而/
'10
K,=10E=S=-3±VK)TJ
2110
AT,=20E=^^-S=-3±V20Tj
370
雙擊下面可以看到原圖
Re
Problem5.5
Solution
Theclosed-looptransferfunctionis
K
_K_K
R—K?+A:(l+a.v)s2+aKs+K
S
Comparingtheclosed-looptransferfunctionwiththegeneralizedform,
Rs2+2^co,,s+co^
Leadingto
con=y/~K
EU4K
Thepercentageovershootistherefore
PO=100e"=40%
Producingtheresult
4=0.869(0.28)
Andthepeaktime
=4s
4Jl-產(chǎn)
Leadingto
4=1.586(0.82)
Problems.7
5.7ProvethattherisetimeTrofasecond-ordersystemwithaunitstepinputisgivenby
1CM1_J1_72
。=晟tan“襄=£tan-1—~~
Plottheriseagainstthedampingratio.
Solution:
n,
Accordingto(4.33):c(t)=l-e~^(cosco.t+,^sincodt).4.33
Whent=Tr,c(t)=l.substituec(t)=1into(4.33)
Producingtheresult
1CM1-J_2
T,,tan-'=晟tan」一%一
Plottherisetimeagainstthedampingratio:
Problem5.9
Solutionto5.9:
Asweknowthatthesystemistheopen-looptransferfunctionofaunity-feedbackcontrol
system.
SoGH(S)=G(S)
Givenas
/G-2)(S+5)
Theclose-looptransferfunctionofthesystemmaybewrittenas
G(s)________4K______
R\'1+G〃(s)(s-2)(s+5)+4K
Thecharacteristicequationis
(s-2)(s+5)+4K=Ons2+3s+4K-io=o
AccordingtotheRouth'smethod,theRouth'sarraymustbeformedasfollow
5214/C-10
s30
504K-10
Forthereisnoclosed-looppolestotherightoftheimaginaryaxis
4/C-10>0=>K>2.5
GiventhatQ=0.5
con=J4K-10
3
,=./=>K=4.75
2J4K-10
WhenK=0,therootare
s=+2,-5
Accordingtothecharacteristicequation,thesolutionsare
whileK<3.0625,wehaveoneortwosolutions,allareintegralnumber.
Orwewillhavesolutionswithimaginarynumber.
Sowecandraw
□Open-looppoles
Closed-looppoles
Problems.10
5.10
solution:
?=0.6
wn=2rad/s
accordingto
/CMi
(c)=1-I2sin(w/+</>)=-
,1一7z
eT-sin(16+0)=O.4tan*
finally,tisdelaytime:
bl.23s(0.67)
Module6
Problem6.3
FirstweassumethedisturbanceDtobezero:
e=R-C
101
C=Ke
5+1s
Hence:'=")
R10K+s(s+l)
ThenwesettheinputRtobezero:
10e_10
C=(Ke+O)?
s(s+l)~D~~10K+s(s+l)
Addingthesetworesultstogether:
3-R12D
10K+s(s+l)10K+s(s+l)
R(s)=";D(s)W
_5+110_5-9
'~10Ks+V(s+l)-10KS+S2(S+I)-100^+52(5+1)
thesteady-stateerror:
c~—0rc—9
%=lims?c=lim?'、~:=lim—5-^=-0.09
DS->OS'+S~+100SST0S+S+100
Problem6.4
Determinethedisturbancerejectionratio(DRR)forthesystemshowninFigP.6.4
+
fig.P.6.4
solution:
fromthediagramwecanknow:
c=0.05
sowecangetthat
DRR=(△◎”)*=]+=]+2^211
(AO〃)CLcR0.05
21
soc=0.025,DRR=9
O.Lv+0.05~0.055+0.025
Problem6.5
6.5Solution
Forthepurposesofdeterminingthesteady-stateenorofthesystem,weshouldgetto
knowtheeffectoftheinputandthedisturbancealongwhentheotherwillbeassumedtobe
zero.
Firsttosimplifytheblockdiagramtothefollowingpatte亡
Allowingthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas
%_20
6?,+2s+20
Q20020*2二40
01-JS2+2S+20-JS2+2S+20S~(Jr+2s+20).s
AccordingtotheequationE=R-C:
%「($)=lim[%(s)—%(s)]=lim[-(l)]=lim?"+2)=。2
°八〃go%',s2+2s+20蘇TOJd+2s+20
問題;
1.系統(tǒng)型為2,對于階躍輸入,穩(wěn)態(tài)誤差為0.
2.終值定理寫的不對。
andthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas
。02=__1__
Js2+2s+20
g______'_____T=______-_____
02ZS-2+2.V+20".y(Jr+2.v+20)
Accordingtotheequatione=-c
essf(5)=lim[—%($)]=lim[sJ=lim十--=-0.05
s-八,四。1八£一。1Jr+2S+20^JS2+2S+20
sothestateerrorshouldbe:ess=essr+ess/=0.2-0.05=0.15
Problem6.9
Solution:
Thetransferfunctionoftheinsideloopis
10
s(s+l)=1()
=一1+10-―1+(10k+1)5
s(s+1)
Andthetransferfunctionofthewholesystemis
C__________10________
R~52+(10^+1)5+10
Wegetthevalueofand0fromtheaboveequation:
wn=Vio
10&+1
AndthevalueofPOis
PO=lOOe-s/G
Accordingtotheformerequation:
PO=10%=f=0.6=嗎±1
2V10
Thefinalresultis
^=i.2Vio-i=O28
10
Module7
Problem7.5
Determinetheclosed-looptransferfunctionandthepercentageovershootforasystem
describedbythepole-zeromapshowninFig.P7.5,assumingthesteadystategainofthe
closed-looptransferfunctionisunity.
a1
SOLUTION:
Fromthefigure,wecangettheBodeformfunction
C_l+ST
元=%:+20/?!?1
r=13,=J(-2/+F=V5-g=-2
_?,/-=0.894^0.9/=—=-
網(wǎng)2
FromFig.7.6onpage117,wecanseethat,undertheeffectofclosed-loopzero,while
3
C=0.9and/=—,thePercentovershootislessthan1%.
2
C_____________1___________
?一(l+sr)(s2/o:+27s/q+l)
-l/r=-3=>r=l/3
=2,<y?=75?2.24n7=2/石*0.894,
C_15
--(s+3)(s?+4s+5)
Problem7.7
7.7Asystemhasatransferfunctionthatmaybewrittenintheform
C=1
R(5+l)(52+as+b)
Itisknownthatfbrthesecond-orderterm,4=0.2.Investigationoftheunitstepresponse
revealsanovershootof5%oftheinput.Calculatetheconstantsaandb,plottheclosed-loop
systempolesonthecomplexplane,andcommentonthereducabilityofthesystem.
Solution:
Thethird-ordersystemwithq=0.2wouldhaveanovershootof5%iftheadditionalpole
werelocatedsuchthattheparameterp=2.25.
Andfromtheknownparameters,1/=1,
then
=2.25(看圖似不超過2.1)
Thetime-domainresponseparametersmaybecalculateas
con=4rad/sand?=0.2
So
a=2〃"=1.6andb=冠=16
thenwewillplotclosed-loopsystempolesonthecomplexplane:
Theotherrealpolecannotbeneglected,theeffectofthereal-axispolecontributiontothe
responsewillbetomakeitmoresluggish.
Problem7.9
Solution:
Examinationoftheplantrevealsthefollowingtime-domainparameters:
(o=2radIsJ=1-=/?;
nT
ExaminingFig7.6,thesystemwith=1wouldhaveanovershootof5%ifthezerois
locatedsuchthattheparametery=0.6.Thisrelatedtotheparameterbby
b=l.2
Iftheinputisaunitstep,thesteady-stateoutputmaybeobtainedbyusingthefinal-value
theorem
$+12
limc(r)=limsC(s)=lim;=0.3
mo5->os->os2+4s+4
Asthereisa5%overshoot,themaximumvalueofthesystemis
(l+5%)xlimc(t)=0.3x105%=0.315
Problem7.11
k(s+1)
A0(S)==TT-=?S=_1;
l+GH]?k(s+l)(k+\)s+k
s
.Gk
B(p(s)==;nozeros;
l+GHl+k(s+l)
(s+1)(5+2)
C0($)=G=s(s+3)=______(s+l)(s+2)(s+4)______
°S~l+GH~?(s+l)(s+2)(s+5)-s(s+3)(s+4)+(s+l)(s+2)(s+5)
s(s+3)(s+4)
G5(52+25+10)
D(s+1);s=0,-l+3i;
OG)=2
l+GH1+(S+1)(S2:2S+10)5+(5+l)(5+25+10)
ModuIe8
Problem8.3
C_GG
8.3(1)
不一l+GH-1+G'
Resultingin
GG
G書上有結(jié)果(8.62)G=
1+(H+1)1+G(H-1)
1°01
TakeG=—,H=into
5+2s+55+1
Wegetthat
105+10
G=—:
s'+3A1?—3s+5
⑵AccordingtoTable8.1
K=limG(5)=2
It'satype0system,thesteady-stateerrorduetoaunitstepinput
]
e&=l+K-5
(3)Foraunitstepinput
RG)=L
Accordingto8.59
1+G(H-1)1+2*(1-1)1
◎(f)=1日——
.v->0\+GH1+2*13
Pmblem8.3
Solution
G⑸=7^7?H(S)==
Hence,theclosed-looptransferfunctionis
10
G(s)二s,+2s+510(5+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供用苗木合同范本
- 加盟教育協(xié)議合同范本
- 與收款合同范本
- 儀器協(xié)議合同范本
- 化驗用品購銷合同范本
- 2024年四川旅游學(xué)院引進考試真題
- 2024年省廈門市梧村小學(xué)招聘考試真題
- 第二單元 遵守社會規(guī)則 大單元教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版道德與法治八年級上冊
- 買賣物品交易合同范本
- 保溫發(fā)泡板合同范本
- 中國后循環(huán)缺血的專家共識48506課件
- 信息論與編碼 自學(xué)報告
- 二年級乘除法口訣專項練習(xí)1000題-推薦
- 貸款項目資金平衡表
- 唯美動畫生日快樂電子相冊視頻動態(tài)PPT模板
- 設(shè)計文件簽收表(一)
- 義務(wù)教育語文課程標準2022年版
- 公務(wù)員入職登記表
- 臨水臨電計算公式案例
- 2022新教科版六年級科學(xué)下冊第二單元《生物的多樣性》全部教案(共7節(jié))
- PEP人教版小學(xué)英語單詞四年級上冊卡片(可直接打印)
評論
0/150
提交評論