2022年吉林省延吉市高考數(shù)學(xué)必刷試卷含解析_第1頁
2022年吉林省延吉市高考數(shù)學(xué)必刷試卷含解析_第2頁
2022年吉林省延吉市高考數(shù)學(xué)必刷試卷含解析_第3頁
2022年吉林省延吉市高考數(shù)學(xué)必刷試卷含解析_第4頁
2022年吉林省延吉市高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對稱2.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且3.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.504.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.35.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.6.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.147.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.8.已知函數(shù)的圖象如圖所示,則下列說法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是9.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④10.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為()A. B.16 C. D.11.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.23312.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,斜率為2的直線與的交點(diǎn)為,若,則直線的方程為___________.14.如圖是一個(gè)幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a216.如圖所示,邊長為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.18.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.19.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.20.(12分)已知,,為正數(shù),且,證明:(1);(2).21.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.22.(10分)已知關(guān)于的不等式有解.(1)求實(shí)數(shù)的最大值;(2)若,,均為正實(shí)數(shù),且滿足.證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.2.D【解析】

首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進(jìn)一步求出個(gè)各棱長.【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.3.C【解析】

先寫出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項(xiàng)式,其通項(xiàng)公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.4.C【解析】

否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.5.D【解析】

利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.6.A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.7.C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)椋捎谠诙x域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.8.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計(jì)算能力,屬于中等題.9.D【解析】

計(jì)算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯(cuò)誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.10.C【解析】

根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.11.C【解析】

計(jì)算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12.C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點(diǎn)橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點(diǎn)睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.14.;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長,表面積是考點(diǎn):1.三視圖;2.幾何體的表面積.15.-2【解析】試題分析:∵a2考點(diǎn):等比數(shù)列性質(zhì)及求和公式16.【解析】

設(shè),,在中利用正弦定理得出關(guān)于的函數(shù),從而可得的最小值.【詳解】解:設(shè),,則,,∴,在中,由正弦定理可得,即,∴,∴當(dāng)即時(shí),取得最小值.故答案為.【點(diǎn)睛】本題考查正弦定理解三角形的應(yīng)用,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】

(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a(bǔ)=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點(diǎn)睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進(jìn)行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.18.(1);(2)【解析】

(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個(gè)根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域?yàn)椋?因?yàn)閱握{(diào),所以對恒成立,所以,恒成立,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號,所以;(2)由(1)知,是的兩個(gè)根.從而,,不妨設(shè),則.因?yàn)椋詔為關(guān)于a的減函數(shù),所以..令,則.因?yàn)楫?dāng)時(shí),在上為減函數(shù).所以當(dāng)時(shí),.從而,所以在上為減函數(shù).所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.19.(1)見解析(2)【解析】

(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面.(2)取中點(diǎn)為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點(diǎn)睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補(bǔ)形法、等體積法.①割補(bǔ)法:求一些不規(guī)則幾何體的體積時(shí),常用割補(bǔ)法轉(zhuǎn)化成已知體積公式的幾何體進(jìn)行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時(shí),這一方法回避了通過具體作圖得到三角形(或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論