2022年黑龍江省哈爾濱第三中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁
2022年黑龍江省哈爾濱第三中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁
2022年黑龍江省哈爾濱第三中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁
2022年黑龍江省哈爾濱第三中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁
2022年黑龍江省哈爾濱第三中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)y=sin2x的圖象可能是A. B.C. D.2.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.53.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有5.已知集合,,,則集合()A. B. C. D.6.曲線在點(diǎn)處的切線方程為()A. B. C. D.7.若樣本的平均數(shù)是10,方差為2,則對(duì)于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為88.已知冪函數(shù)的圖象過點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.9.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b10.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.511.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.12.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項(xiàng)式滿足,則_________,__________.14.已知過點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是15.若函數(shù)()的圖象與直線相切,則______.16.定義在R上的函數(shù)滿足:①對(duì)任意的,都有;②當(dāng)時(shí),,則函數(shù)的解析式可以是______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點(diǎn),底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.18.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點(diǎn),若,求的值.21.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為求a,b的值;證明:.22.(10分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).2.A【解析】

計(jì)算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點(diǎn)睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點(diǎn).3.A【解析】

首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪ⅲ杂?,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.4.C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.5.D【解析】

根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.6.A【解析】

將點(diǎn)代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點(diǎn)斜式求的切線方程.【詳解】曲線,即,當(dāng)時(shí),代入可得,所以切點(diǎn)坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點(diǎn)斜式可得切線方程為,即,故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點(diǎn)的切線方程求法,屬于基礎(chǔ)題.7.D【解析】

由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點(diǎn)睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.8.A【解析】

根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9.B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.10.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模11.D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.12.C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】∵多項(xiàng)式滿足∴令,得,則∴∴該多項(xiàng)式的一次項(xiàng)系數(shù)為∴∴∴令,得故答案為5,7214.【解析】

通過設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.15.2【解析】

設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)?,所以,即,又?所以,即,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.16.(或,答案不唯一)【解析】

由可得是奇函數(shù),再由時(shí),可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時(shí),,知或等,答案不唯一.故答案為:(或,答案不唯一).【點(diǎn)睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道開放性的題,難度不大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】

(Ⅰ)由題知,如圖以點(diǎn)為原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系,計(jì)算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個(gè)法向量,計(jì)算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個(gè)法向量,計(jì)算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點(diǎn)為原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設(shè)為平面PDE的一個(gè)法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設(shè)為平面PBE的一個(gè)法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點(diǎn)睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計(jì)算,二面角大小的求解,考查了空間向量在立體幾何中的應(yīng)用,考查了學(xué)生的空間想象能力與運(yùn)算求解能力.18.(1)個(gè);(1)存在,.【解析】試題分析:(1)設(shè),對(duì)其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對(duì)和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個(gè)函數(shù)的圖象在上有兩個(gè)交點(diǎn),即在上零點(diǎn)的個(gè)數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對(duì)恒成立,則,對(duì)恒成立,即,對(duì)恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時(shí),,∴,∵,∴4.故當(dāng)時(shí),對(duì)恒成立,.......................8分當(dāng)即時(shí),在上遞減,∴.∵,∴,故當(dāng)時(shí),對(duì)恒成立............................10分②若對(duì)恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對(duì)恒成立,且的取值范圍為................................................11分考點(diǎn):導(dǎo)數(shù)應(yīng)用.【思路點(diǎn)睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進(jìn)一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.19.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)?;(Ⅱ)因?yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.20.(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,直接得到的直角坐標(biāo)方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點(diǎn),所對(duì)應(yīng)的參數(shù)分別為,,則,.,解得,則.【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標(biāo)與直角坐標(biāo)的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標(biāo)準(zhǔn)參數(shù)方程代入到對(duì)應(yīng)曲線的直角坐標(biāo)方程中,構(gòu)成關(guān)于的一元二次方程并結(jié)合韋達(dá)定理形式進(jìn)行分析求解.21.(1);(2)見解析【解析】分析:第一問結(jié)合導(dǎo)數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論