




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年江蘇省張家港第二中學(xué)高三最后一次模擬(三模)數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.62.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.4.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.35.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.6.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.7.函數(shù)的圖像大致為()A. B.C. D.8.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5789.某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種10.設(shè),,則()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.12.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若的最大值是10,則________.14.已知等差數(shù)列的前項和為,且,則______.15.若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應(yīng)區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.16.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.18.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.19.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標(biāo)為,求的值.20.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.21.(12分)已知函數(shù)(1)當(dāng)時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.22.(10分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當(dāng)時,求(O為坐標(biāo)原點)面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎(chǔ)題.2.A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.3.A【解析】
每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.4.C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。5.D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準(zhǔn)線方程,則點到焦點的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時,取得最小值,最小值為,故選D.該題考查的是有關(guān)距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.6.C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力,應(yīng)用意識.7.A【解析】
根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當(dāng)時,,當(dāng),,排除,故選:.本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8.D【解析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.本題考查了隨機數(shù)表表的應(yīng)用,正確掌握隨機數(shù)表法的使用方法是解題的關(guān)鍵.9.B【解析】
分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.10.D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.11.C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.12.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點,取得最大值,故可得,解得.故答案為:.本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.14.【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:本小題考查等差數(shù)列的性質(zhì),前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,應(yīng)用意識.15.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應(yīng)的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④本題考查新定義題型、利用導(dǎo)數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題16.丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取中點為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.18.(Ⅰ),(Ⅱ)見解析【解析】
(1)根據(jù)導(dǎo)數(shù)的運算法則,求出函數(shù)的導(dǎo)數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導(dǎo)數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號,這里應(yīng)注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當(dāng)時,,所以,即.本題考查了利用導(dǎo)數(shù)求切線的斜率,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結(jié)合構(gòu)造函數(shù)實現(xiàn)正確轉(zhuǎn)換為最大值和最小值問題是關(guān)鍵.19.(1);(2).【解析】
(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線l的斜率不存在時,,,由于;②當(dāng)直線l的斜率為0時,,,則;③當(dāng)直線l的斜率不為0時,設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.該題考查直線與圓錐曲線的綜合問題,橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.20.(Ⅰ)或(Ⅱ)12【解析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎(chǔ)題型.21.(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030業(yè)務(wù)流程管理(BPM)行業(yè)市場發(fā)展分析及前景趨勢與投融資戰(zhàn)略研究報告
- 2025-2030DSL過濾器行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 外研版八年級上冊英語差異化教學(xué)方案
- 高速公路施工安全生產(chǎn)培訓(xùn)要求
- 工業(yè)設(shè)備保修措施及保障方案
- 餐飲合作經(jīng)營協(xié)議書范例二零二五年
- 2025年合成材料抗氧化劑合作協(xié)議書
- 2025-2030年中國生態(tài)魚缸行業(yè)深度研究分析報告
- 2025年中國工業(yè)硅金屬硅行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略研究報告
- 中國畜用配合飼料市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 《寬容別人 快樂自己》班會課件
- 2024光伏電站索懸柔性支架施工方案
- 仲裁法全套課件
- 阿斯丹商賽運營規(guī)劃方案
- 《HSK標(biāo)準(zhǔn)教程2》第4課課件
- 教育家精神專題講座課件
- 300立方米柴油儲罐設(shè)計
- 頸椎后路術(shù)后護理查房
- 2024年事業(yè)單位考試貴州省畢節(jié)地區(qū)畢節(jié)市A類《職業(yè)能力傾向測驗》統(tǒng)考試題含解析
- 幼兒足球知識講座
- chapter-3雅思王聽力特別名詞語料庫
評論
0/150
提交評論