




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.2.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.23.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.當時,函數(shù)的圖象大致是()A. B.C. D.5.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.6.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.7.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.8.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件9.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.10.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12812.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為______.14.已知,則__________.15.已知等差數(shù)列滿足,,則的值為________.16.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.18.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護人員和醫(yī)療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?19.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).20.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.21.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.22.(10分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.2.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎(chǔ)題.3.B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.4.B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.5.B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【詳解】由題意知:定義域為,,為偶函數(shù),當時,,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進而化簡不等式.6.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.7.D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.8.C【解析】
先根據(jù)直線與直線平行確定的值,進而即可確定結(jié)果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.9.D【解析】
根據(jù)中點在軸上,設(shè)出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查利用導數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.10.C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關(guān)鍵.11.C【解析】
根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12.C【解析】
設(shè)出點的坐標,以為底結(jié)合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點的坐標為,直線的方程為,即,設(shè)點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.14.【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,倍角公式,誘導公式,屬于簡單題目.15.11【解析】
由等差數(shù)列的下標和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì)的應用,屬于基礎(chǔ)題.16.【解析】
根據(jù)雙曲線上的點的坐標關(guān)系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎(chǔ)題18.每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設(shè)每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數(shù)取最小值的整數(shù)解,即可得解.【詳解】設(shè)每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數(shù),如圖所示,為不等式組表示的可行域,由圖可知,當直線經(jīng)過點時,最小,解方程組,解得,,然而,故點不是最優(yōu)解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【點睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數(shù)解問題,考查了數(shù)形結(jié)合的思想,解題關(guān)鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù),同時注意整點的選取,屬于中檔題.19.(1)(2)三個零點【解析】
(1)由題意知恒成立,構(gòu)造函數(shù),對函數(shù)求導,求得函數(shù)最值,進而得到結(jié)果;(2)當時先對函數(shù)求導研究函數(shù)的單調(diào)性可得到函數(shù)有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調(diào),無極值;當時,,一方面,,且在遞減,所以在區(qū)間有一個零點.另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點,是函數(shù)的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數(shù)的零點,導數(shù)的綜合應用.在研究函數(shù)零點時,有一種方法是把函數(shù)的零點轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點,特別是利用分離參數(shù)法轉(zhuǎn)化為動直線與函數(shù)圖象交點問題,這樣就可利用導數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢,得出結(jié)論.20.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.21.(1)見解析(2)見證明【解析】
(1)對函數(shù)求導,分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導數(shù)方法判斷出的單調(diào)性,進而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 論古代文學作品的思想深度研究試題及答案
- 2025酒店裝修合同樣本參考
- 2025中文租賃合同樣本
- 新教師崗前教育法規(guī)培訓
- 美容師職業(yè)發(fā)展中的市場定位與策略選擇試題及答案
- 可克達拉職業(yè)技術(shù)學院《歐洲浪漫音樂派欣賞》2023-2024學年第一學期期末試卷
- 山西省朔州市懷仁市重點中學2025屆高三下學期開學(第一次模擬)考試數(shù)學試題含解析
- 重慶工商職業(yè)學院《建筑工程預算》2023-2024學年第二學期期末試卷
- 朝陽師范高等??茖W?!度肆Y源管理數(shù)據(jù)分析與運用》2023-2024學年第二學期期末試卷
- 2025年新疆吐魯番市高昌區(qū)市級名校6月初三押題測試卷(2)化學試題(理工農(nóng)醫(yī)類)試題含解析
- 面癱中醫(yī)臨床路徑完整版
- GB/T 37546-2019無人值守變電站監(jiān)控系統(tǒng)技術(shù)規(guī)范
- GB/T 17879-1999齒輪磨削后表面回火的浸蝕檢驗
- GA 61-2010固定滅火系統(tǒng)驅(qū)動、控制裝置通用技術(shù)條件
- 簡明大學物理電子版
- 脊柱彎曲異常篩查結(jié)果記錄表
- 公路工程結(jié)算表
- 舉升機每日維護檢查表
- 質(zhì)量目標及計劃分解表
- 《信息化教學評價》
- 蹲踞式跳遠教案
評論
0/150
提交評論