2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題含解析_第1頁
2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題含解析_第2頁
2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題含解析_第3頁
2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題含解析_第4頁
2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省襄陽市棗陽縣中考五模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.82.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個3.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.44.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.5.下列關于統(tǒng)計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質量情況適宜采用抽樣調查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的平均數(shù)大于乙組數(shù)據(jù)的平均數(shù)6.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.7.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)8.如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.119.下列計算中,正確的是()A.a?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a10.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°二、填空題(共7小題,每小題3分,滿分21分)11.不等式組的解集是__________.12.方程的解是_________.13.已知一組數(shù)據(jù),,﹣2,3,1,6的中位數(shù)為1,則其方差為____.14.已知二次函數(shù)中,函數(shù)y與x的部分對應值如下:...-10123......105212...則當時,x的取值范圍是_________.15.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.16.在實數(shù)范圍內分解因式:x2y﹣2y=_____.17.點(a-1,y1)、(a+1,y2)在反比例函數(shù)y=(k>0)的圖象上,若y1<y2,則a的范圍是________.三、解答題(共7小題,滿分69分)18.(10分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組

分數(shù)段(分)

頻數(shù)

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數(shù)和m的值;(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.19.(5分)某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;經調查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?20.(8分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?21.(10分)在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.求每臺電腦、每臺電子白板各多少萬元?根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.22.(10分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經過點M,N.求反比例函數(shù)的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.23.(12分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點.(1)求a、k的值;(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點M、N,當MN=2時,畫出示意圖并直接寫出b的值.24.(14分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.2、D【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.3、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B4、A【解析】分析:根據(jù)中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關鍵是找出圖形的對稱中心與對稱軸.5、B【解析】

根據(jù)事件發(fā)生的可能性的大小,可判斷A,根據(jù)調查事物的特點,可判斷B;根據(jù)調查事物的特點,可判斷C;根據(jù)方差的性質,可判斷D.【詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機事件,故A說法不正確;B、燈泡的調查具有破壞性,只能適合抽樣調查,故檢測100只燈泡的質量情況適宜采用抽樣調查,故B符合題意;C、了解北京市人均月收入的大致情況,調查范圍廣適合抽樣調查,故C說法錯誤;D、甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的波動比乙組數(shù)據(jù)的波動小,不能說明平均數(shù)大于乙組數(shù)據(jù)的平均數(shù),故D說法錯誤;故選B.【點睛】本題考查隨機事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.方差越小波動越?。?、C【解析】試題分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.7、C【解析】

根據(jù)題意知小李所對應的坐標是(7,4).故選C.8、A【解析】分析:根據(jù)多邊形的內角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據(jù)題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點睛:本題主要考查了多邊形內角和公式及外角的特征.求多邊形的邊數(shù),可以轉化為方程的問題來解決.9、C【解析】

根據(jù)同底數(shù)冪的運算法則進行判斷即可.【詳解】解:A、a?3a=3a2,故原選項計算錯誤;B、2a+3a=5a,故原選項計算錯誤;C、(ab)3=a3b3,故原選項計算正確;D、7a3÷14a2=a,故原選項計算錯誤;故選C.【點睛】本題考點:同底數(shù)冪的混合運算.10、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質.二、填空題(共7小題,每小題3分,滿分21分)11、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質是解決這個問題的關鍵.12、x=-2【解析】方程兩邊同時平方得:,解得:,檢驗:(1)當x=3時,方程左邊=-3,右邊=3,左邊右邊,因此3不是原方程的解;(2)當x=-2時,方程左邊=2,右邊=2,左邊=右邊,因此-2是方程的解.∴原方程的解為:x=-2.故答案為:-2.點睛:(1)根號下含有未知數(shù)的方程叫無理方程,解無理方程的基本思想是化“無理方程”為“有理方程”;(2)解無理方程和解分式方程相似,求得未知數(shù)的值之后要檢驗,看所得結果是原方程的解還是增根.13、3【解析】試題分析:∵數(shù)據(jù)﹣3,x,﹣3,3,3,6的中位數(shù)為3,∴,解得x=3,∴數(shù)據(jù)的平均數(shù)=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案為3.考點:3.方差;3.中位數(shù).14、0<x<4【解析】

根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質,利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學們應熟練掌握.15、1【解析】

設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.16、y(x+)(x﹣)【解析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數(shù)范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內進行因式分解的式子的結果一般要分到出現(xiàn)無理數(shù)為止.17、﹣1<a<1【解析】

解:∵k>0,∴在圖象的每一支上,y隨x的增大而減小,①當點(a-1,y1)、(a+1,y2)在圖象的同一支上,∵y1<y2,∴a-1>a+1,解得:無解;②當點(a-1,y1)、(a+1,y2)在圖象的兩支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案為:-1<a<1.【點睛】本題考查反比例函數(shù)的性質.三、解答題(共7小題,滿分69分)18、(1)50,18;(2)中位數(shù)落在51﹣56分數(shù)段;(3).【解析】

(1)利用C分數(shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數(shù):50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分數(shù)段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1

A1

A2

B1

A1

(A1,A2)

(A1,B1)

A2

(A2,A1)

(A2,B1)

B1

(B1,A1)

(B1,A2)

P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(shù)(率)分布表,扇形統(tǒng)計圖,中位數(shù).19、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則商品應降價2.1元.【解析】

(1)設每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由銷售問題的數(shù)量關系建立方程求出其解即可【詳解】解:(1)設每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴y=2.1.答:要使商場每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則每件商品應降價2.1元.【點睛】此題主要考查了一元二次方程的應用,關鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關系,列出方程,解答即可.20、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產量+B種生姜的產量=總產量,列方程求解;(2)設A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關系列出函數(shù)關系式,在x的取值范圍內求總產量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù)題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題意得,x≥12設全部收購該基地生姜的年總收入為y元,則y=8×2000x+7×2500(30-x)=-1500x+525000,∵y隨x的增大而減小,∴當x=10時,y有最大值,此時,30-x=20,y的最大值為510000元,答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【點睛】本題考查了一次函數(shù)的應用.關鍵是根據(jù)總產量=A種生姜的產量+B種生姜的產量,列方程或函數(shù)關系式.21、(1)每臺電腦0.5萬元,每臺電子白板1.5萬元(2)見解析【解析】解:(1)設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)題意得:,解得:。答:每臺電腦0.5萬元,每臺電子白板1.5萬元。(2)設需購進電腦a臺,則購進電子白板(30-a)臺,則,解得:,即a=15,16,17。故共有三種方案:方案一:購進電腦15臺,電子白板15臺.總費用為萬元;方案二:購進電腦16臺,電子白板14臺.總費用為萬元;方案三:購進電腦17臺,電子白板13臺.總費用為萬元。∴方案三費用最低。(1)設電腦、電子白板的價格分別為x,y元,根據(jù)等量關系:“1臺電腦+2臺電子白板=3.5萬元”,“2臺電腦+1臺電子白板=2.5萬元”,列方程組求解即可。(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論