![2022屆上海市上外附屬大境中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view2/M01/03/35/wKhkFma6v7aAANLEAAILIrCFQ2Y778.jpg)
![2022屆上海市上外附屬大境中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view2/M01/03/35/wKhkFma6v7aAANLEAAILIrCFQ2Y7782.jpg)
![2022屆上海市上外附屬大境中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view2/M01/03/35/wKhkFma6v7aAANLEAAILIrCFQ2Y7783.jpg)
![2022屆上海市上外附屬大境中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view2/M01/03/35/wKhkFma6v7aAANLEAAILIrCFQ2Y7784.jpg)
![2022屆上海市上外附屬大境中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view2/M01/03/35/wKhkFma6v7aAANLEAAILIrCFQ2Y7785.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.2.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位3.在直角中,,,,若,則()A. B. C. D.4.下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.45.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π6.已知三棱柱()A. B. C. D.7.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.8.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-329.已知角的終邊經(jīng)過點,則A. B.C. D.10.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.11.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.12.已知數(shù)列中,,(),則等于()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和__________.16.如圖是九位評委打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.18.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.19.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學(xué)習(xí)時間不少于5小時419線上學(xué)習(xí)時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機抽取20人,求這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)20.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.21.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時,用列舉法表示集合;(Ⅱ)當(dāng)時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.22.(10分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時,證明:對;(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,
將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍,所得函數(shù)的解析式為,
再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)??疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復(fù)習(xí)時要注意基礎(chǔ)知識的理解與落實.三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.2.A【解析】
運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).3.C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.4.C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時,可得成立,當(dāng)時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識點的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5.C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.6.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=7.C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.8.A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.9.D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.10.B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.11.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應(yīng)方法求解.12.A【解析】
分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數(shù)列是以3為周期的周期數(shù)列,
,
,
故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-15【解析】
是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.14.【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.15.【解析】
由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關(guān)系式,再進行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【詳解】因為為偶函數(shù),在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數(shù)列.所以,.故答案為:【點睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關(guān)系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.16.1【解析】
寫出莖葉圖對應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)4【解析】
(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.18.(Ⅰ);(Ⅱ),證明見解析.【解析】
(Ⅰ)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設(shè)點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設(shè)點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關(guān)系、定值問題的求解;關(guān)鍵是能夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.19.(1)填表見解析;有99%的把握認為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分數(shù)不少于120分分數(shù)不足120分合計線上學(xué)習(xí)時間不少于5小時15419線上學(xué)習(xí)時間不足5小時101626合計252045有99%的把握認為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設(shè)從全校不少于120分的學(xué)生中隨機抽取20人,這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學(xué)期望與方差的計算問題,屬于基礎(chǔ)題.20.(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.21.(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時,,,,,,.即可得出.(Ⅱ)(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時,,,,,..(Ⅱ)證明:(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點睛】本題主要考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- A公司JSC系統(tǒng)研發(fā)項目管理優(yōu)化研究
- 分布式驅(qū)動電動汽車執(zhí)行器失效自適應(yīng)容錯控制研究
- 電子商務(wù)物流發(fā)展趨勢研究
- 基于CT門脈期紋理特征預(yù)測肝泡型包蟲病肝外轉(zhuǎn)移的初步研究
- 電機設(shè)備的正確使用與維護培訓(xùn)
- 2025-2030年中國印花經(jīng)編布行業(yè)深度研究分析報告
- 2024-2026年中國PET.MRI系統(tǒng)行業(yè)市場全景調(diào)研及投資規(guī)劃建議報告
- 電子商務(wù)平臺的溝通策略
- 農(nóng)村道路修建申請書
- 2025年硅橡膠防水游泳鏡項目投資可行性研究分析報告
- 《零起點學(xué)中醫(yī)》課件
- 2025年護理質(zhì)量與安全管理工作計劃
- 湖南大學(xué) 嵌入式開發(fā)與應(yīng)用(張自紅)教案
- 地下商業(yè)街的規(guī)劃設(shè)計
- 長安大學(xué)《畫法幾何與機械制圖一》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動態(tài)及未來發(fā)展趨勢預(yù)測報告
- DB14T+3154-2024泡沫瀝青就地冷再生路面施工技術(shù)規(guī)范
- 機電設(shè)備及工藝作業(yè)指導(dǎo)書
- 2024年新華東師大版七年級上冊數(shù)學(xué)全冊教案(新版教材)
- 醫(yī)院物業(yè)管理制度
- 初中數(shù)學(xué)思維訓(xùn)練雙十字相乘法因式分解練習(xí)100道及答案
評論
0/150
提交評論