版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在的圖象大致為A. B.C. D.2.某市政府決定派遣名干部(男女)分成兩個(gè)小組,到該市甲、乙兩個(gè)縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.3.用電腦每次可以從區(qū)間內(nèi)自動(dòng)生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都小于的概率為()A. B. C. D.4.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.5.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.7.木匠師傅對(duì)一個(gè)圓錐形木件進(jìn)行加工后得到一個(gè)三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.8.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③9.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.11.下列不等式正確的是()A. B.C. D.12.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫(xiě)出數(shù)列的通項(xiàng)公式)14.設(shè)函數(shù)在區(qū)間上的值域是,則的取值范圍是__________.15.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.16.已知向量,,若,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國(guó)建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó),黨和國(guó)家為勞動(dòng)者開(kāi)拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無(wú)公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開(kāi)展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說(shuō)出你的決策方案并說(shuō)明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購(gòu)均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤(rùn);(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過(guò)5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.20.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時(shí)的值;(3)問(wèn)當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.21.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.22.(10分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.2.C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】?jī)山M至少都是人,則分組中兩組的人數(shù)分別為、或、,
又因?yàn)槊刹坎荒軉为?dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問(wèn)題,涉及分組分配問(wèn)題,考查計(jì)算能力,屬于中等題.3.C【解析】
由幾何概型的概率計(jì)算,知每次生成一個(gè)實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】∵每次生成一個(gè)實(shí)數(shù)小于1的概率為.∴這3個(gè)實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同時(shí)發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.4.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.5.B【解析】
化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.6.D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過(guò)作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問(wèn)題,涉及到向量的線性運(yùn)算、數(shù)量積、點(diǎn)到直線的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.7.C【解析】
由三視圖知幾何體是一個(gè)從圓錐中截出來(lái)的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問(wèn)題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.8.C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.9.C【解析】
由余弦函數(shù)的單調(diào)性找出的等價(jià)條件為,再利用大角對(duì)大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題考查充分必要條件的判定,同時(shí)也考查了余弦函數(shù)的單調(diào)性、大角對(duì)大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.10.D【解析】
由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.11.D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12.C【解析】
根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱性的應(yīng)用,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14..【解析】
配方求出頂點(diǎn),作出圖像,求出對(duì)應(yīng)的自變量,結(jié)合函數(shù)圖像,即可求解.【詳解】,頂點(diǎn)為因?yàn)楹瘮?shù)的值域是,令,可得或.又因?yàn)楹瘮?shù)圖象的對(duì)稱軸為,且,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查函數(shù)值域,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15.【解析】
通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.16.10【解析】
根據(jù)垂直得到,代入計(jì)算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.18.(1)見(jiàn)解析(2)見(jiàn)解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫?,所?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19.(1)見(jiàn)解析;(2)(i)該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元;(3)分布列見(jiàn)解析,.【解析】
(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來(lái)選擇.(2)對(duì)于兩種方法,先計(jì)算出每畝平均產(chǎn)量,再算農(nóng)場(chǎng)一年的利潤(rùn).(3)估計(jì)頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫(xiě)出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長(zhǎng)光照時(shí)間的方法;((2)(i)對(duì)于采用延長(zhǎng)光照時(shí)間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.(ii)對(duì)于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.因此,該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點(diǎn)睛】本題主要考查樣本估計(jì)總體和離散型隨機(jī)變量的分布列,還考查了數(shù)據(jù)處理和運(yùn)算求解的能力,屬于中檔題.20.(1)(2),的最小值為.(3)時(shí),面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進(jìn)而求解;(3)由題,,則,設(shè),,利用導(dǎo)函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因?yàn)?所以,,所以,又,,則,所以,所以(2)記,則,設(shè),,則,記,則,令,則,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng)時(shí)取最小值,此時(shí),的最小值為.(3)的面積,所以,設(shè),則,設(shè),則,令,,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng),即時(shí),面積取最小值為【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)之股票模擬實(shí)習(xí)總結(jié)
- 國(guó)開(kāi)《兒童發(fā)展問(wèn)題的咨詢與輔導(dǎo)》案例1-5
- 銀行合規(guī)管理制度實(shí)施改進(jìn)
- 酒店餐廳食品安全管理制度
- 二次結(jié)構(gòu)施工合同
- 幼兒秋季保健工作計(jì)劃
- 招聘方案范文【范例15篇】
- 小學(xué)語(yǔ)文教學(xué)經(jīng)驗(yàn)交流發(fā)言稿(19篇)
- 供應(yīng)鏈新質(zhì)生產(chǎn)力發(fā)展趨勢(shì)-2024
- 《機(jī)械制造基礎(chǔ)》課件 模塊6 機(jī)床專用夾具的設(shè)計(jì)過(guò)程
- 2024年木屑貿(mào)易協(xié)議3篇
- 【MOOC】信息安全-復(fù)旦大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- “希臘羅馬古典文化”歷史教學(xué)課件
- 泛光照明施工方案
- 附屬醫(yī)院物業(yè)保潔服務(wù)方案及報(bào)價(jià)
- 中國(guó)慢性阻塞性肺疾病基層診療指南(2024年)解讀
- 大米營(yíng)銷策劃方案
- 2024年影視制作委托合同協(xié)議書(shū)
- 智能制造數(shù)字化孿生模型構(gòu)建合同
- 體育賽事安全生產(chǎn)保障方案
- 安全生產(chǎn)責(zé)任制落實(shí)培訓(xùn)
評(píng)論
0/150
提交評(píng)論