版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.2.復(fù)數(shù)的虛部是()A. B. C. D.3.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.4.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.5.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.36.已知,則的值構(gòu)成的集合是()A. B. C. D.7.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.8.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要9.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.10.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.11.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,12.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.14.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.15.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_____.16.(5分)函數(shù)的定義域是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.18.(12分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過焦點(diǎn)時(shí),點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時(shí),有數(shù)列滿足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.19.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),①求函數(shù)在點(diǎn)處的切線方程;②比較與的大小;(2)當(dāng)時(shí),若對(duì)時(shí),,且有唯一零點(diǎn),證明:.21.(12分)已知不等式的解集為.(1)求實(shí)數(shù)的值;(2)已知存在實(shí)數(shù)使得恒成立,求實(shí)數(shù)的最大值.22.(10分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.2.C【解析】因?yàn)?,所以的虛部是,故選C.3.A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.4.D【解析】,則故選D.5.A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.6.C【解析】
對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡(jiǎn)可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),,則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式的化簡(jiǎn),誘導(dǎo)公式,分類討論,屬于基本題.7.C【解析】
先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8.B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.9.B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).10.B【解析】
由余弦的二倍角公式化簡(jiǎn)函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長(zhǎng)度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長(zhǎng)度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡(jiǎn)單題.11.B【解析】
根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.12.B【解析】
先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素?cái)?shù)有:、、、、、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).14..【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.15..【解析】
計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.16.【解析】
要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)最大值為【解析】
(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程.(2)設(shè)出兩點(diǎn)的坐標(biāo),求得的表達(dá)式,并利用三角恒等變換進(jìn)行化簡(jiǎn),再結(jié)合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標(biāo)方程為,即.(2)不妨設(shè),,,,,則當(dāng)時(shí),取得最大值,最大值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,考查極坐標(biāo)系下線段長(zhǎng)度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.18.(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進(jìn)而求得點(diǎn)的坐標(biāo),結(jié)合弦長(zhǎng)即可求得拋物線的方程;(2)設(shè)直線的方程,運(yùn)用韋達(dá)定理可得,可得之間的關(guān)系,再運(yùn)用進(jìn)行裂項(xiàng),可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點(diǎn)的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點(diǎn)睛】本題考查了直線與拋物線的關(guān)系,考查了韋達(dá)定理和運(yùn)用裂項(xiàng)法求數(shù)列的和,考查了運(yùn)算能力,屬于中檔題.19.(1);(2)證明見解析.【解析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.20.(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點(diǎn)斜式求函數(shù)在點(diǎn)處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.(2)由題意,,在上有唯一零點(diǎn).利用導(dǎo)數(shù)可得當(dāng)時(shí),在上單調(diào)遞減,當(dāng),時(shí),在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時(shí),,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時(shí),,即;當(dāng)時(shí),,即;當(dāng)時(shí),,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點(diǎn).當(dāng)時(shí),,在上單調(diào)遞減,當(dāng),時(shí),,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.21.(1);(2)4【解析】
(1)分類討論,求解x的范圍,取并集,得到絕對(duì)值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時(shí)不等式可化為當(dāng)時(shí),不等式可化為;當(dāng)時(shí),不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)游泳小學(xué)作文15篇
- 《打電話》教案匯編九篇
- 大學(xué)生實(shí)習(xí)報(bào)告(15篇)
- 2024年12月 《馬克思主義基本原理概論》復(fù)習(xí)題
- 關(guān)于五年級(jí)單元作文300字10篇
- 2024年五年級(jí)語文上冊(cè) 第一單元 語文園地一教學(xué)實(shí)錄 新人教版
- 公司財(cái)務(wù)個(gè)人工作計(jì)劃5篇
- 2019年資產(chǎn)負(fù)債表(樣表)
- 轉(zhuǎn)讓協(xié)議書范文七篇
- 個(gè)人房屋租賃合同范文合集五篇
- 山東省濰坊市濰城區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語文試題
- 電玩城崗位流程培訓(xùn)方案
- 會(huì)計(jì)師事務(wù)所保密制度
- 復(fù)合機(jī)器人行業(yè)分析
- 建立進(jìn)出校園安全控制與管理的方案
- 阿里菜鳥裹裹云客服在線客服認(rèn)證考試及答案
- 水庫防恐反恐應(yīng)急預(yù)案
- 供應(yīng)商管理培訓(xùn)資料課件
- 綠植租擺服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 幼兒園優(yōu)質(zhì)公開課:大班科學(xué)《有趣的仿生》課件
- 通用短視頻拍攝腳本模板
評(píng)論
0/150
提交評(píng)論