版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),是非零向量,若對(duì)于任意的,都有成立,則A. B. C. D.2.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.83.已知集合A,則集合()A. B. C. D.4.已知,則()A. B. C. D.5.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.1207.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.8.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心9.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.10.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.11.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.12.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)的值為_____.14.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.15.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.16.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.18.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.19.(12分)設(shè)前項(xiàng)積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,且,求的最小值.20.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.21.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.22.(10分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當(dāng),即時(shí),最小,滿足,對(duì)于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.2、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.3、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.4、B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.5、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.6、C【解析】
可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.7、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.8、A【解析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、B【解析】
利用復(fù)數(shù)乘法運(yùn)算化簡,由此求得.【詳解】依題意,所以.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.10、A【解析】
將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.11、D【解析】
利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.12、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【點(diǎn)睛】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.14、【解析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【詳解】原問題等價(jià)于,當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查了對(duì)勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.15、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.16、1【解析】
令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)當(dāng)時(shí),,①當(dāng)時(shí),,令,即,解得,②當(dāng)時(shí),,顯然成立,所以,③當(dāng)時(shí),,令,即,解得,綜上所述,不等式的解集為.(2)因?yàn)?,因?yàn)?,有成立,所以只需,解得,所以a的取值范圍為.【點(diǎn)睛】絕對(duì)值不等式的解法:法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18、(1):,直線:;(2).【解析】
(1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為.(2)設(shè),則,,,當(dāng)時(shí),取得最大值為.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,掌握公式可輕松自如進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化.19、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)當(dāng)時(shí),由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項(xiàng)和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當(dāng)時(shí),,所以,即,所以.因?yàn)槭堑炔顢?shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點(diǎn)睛】本題主要考查等差數(shù)列的定義,前n項(xiàng)和以及數(shù)列的增減性,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.20、(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可.試題解析:整理得解得①②解得③,且無限趨近于4,綜上的取值范圍是21、(1),;(2).【解析】
(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通項(xiàng)公式即可求得數(shù)列和的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可求得數(shù)列的前2020項(xiàng)的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因?yàn)棰佼?dāng)時(shí),②由①②得,,即,又當(dāng)時(shí),不滿足上式,.數(shù)列的前2020項(xiàng)的和設(shè)③,則④,由③④得:,所以,所以.【點(diǎn)睛】本題考查等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)軟裝方案設(shè)計(jì)與全球采購一體化協(xié)議版B版
- 專業(yè)項(xiàng)目融資策略咨詢服務(wù)協(xié)議典范版A版
- 「全面」樣本協(xié)議指南(2024修訂版)版B版
- 重點(diǎn)傳染病知識(shí)培訓(xùn)課件
- 2025年度廠房灰土施工與綠色建筑認(rèn)證合同3篇
- 2025年度城市核心區(qū)拆遷房買賣合同書4篇
- 2025年度智能穿戴設(shè)備陳列展示與銷售合同范本4篇
- 2025年創(chuàng)新型廠房抵押擔(dān)保投資合同4篇
- 二零二五版打井空壓機(jī)租賃及風(fēng)險(xiǎn)控制協(xié)議3篇
- 2024鋁單板生產(chǎn)設(shè)備采購與租賃合同
- 畢淑敏心理咨詢手記在線閱讀
- 亞硝酸鈉安全標(biāo)簽
- pcs-985ts-x說明書國內(nèi)中文版
- GB 11887-2012首飾貴金屬純度的規(guī)定及命名方法
- 小品《天宮賀歲》臺(tái)詞劇本手稿
- 醫(yī)院患者傷口換藥操作課件
- 欠薪強(qiáng)制執(zhí)行申請(qǐng)書
- 礦山年中期開采重點(diǎn)規(guī)劃
- 資源庫建設(shè)項(xiàng)目技術(shù)規(guī)范匯編0716印刷版
- GC2級(jí)壓力管道安裝質(zhì)量保證體系文件編寫提綱
- 預(yù)應(yīng)力混凝土簡支小箱梁大作業(yè)計(jì)算書
評(píng)論
0/150
提交評(píng)論