版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.2.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.3.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.54.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.5.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.6.已知拋物線的焦點為,為拋物線上一點,,當(dāng)周長最小時,所在直線的斜率為()A. B. C. D.7.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.8.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.9.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.110.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.11.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時,輸出的值等于()A.1 B. C. D.12.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.14.的展開式中的常數(shù)項為_______.15.在區(qū)間內(nèi)任意取一個數(shù),則恰好為非負(fù)數(shù)的概率是________.16.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.19.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.20.(12分)某超市在節(jié)日期間進(jìn)行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機(jī)會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點的交點為,與的異于極點的交點為,求.22.(10分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.2、C【解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.3、D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.4、D【解析】
根據(jù)為等腰三角形,可求出點P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.5、A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.6、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標(biāo),計算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點P運(yùn)動到M點處,三角形周長最小,故此時M的坐標(biāo)為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質(zhì),難度中等.7、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.8、D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.9、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時,,則;當(dāng)時,則.設(shè)為函數(shù)圖像上的兩點,當(dāng)或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點是求出和的函數(shù)關(guān)系式.本題的易錯點是計算.10、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識.11、C【解析】
根據(jù)程序圖,當(dāng)x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎(chǔ)題.12、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由坐標(biāo)系可知考點:復(fù)數(shù)運(yùn)算14、【解析】
寫出展開式的通項公式,考慮當(dāng)?shù)闹笖?shù)為零時,對應(yīng)的值即為常數(shù)項.【詳解】的展開式通項公式為:,令,所以,所以常數(shù)項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項公式分析常數(shù)項對應(yīng)的取值.15、【解析】
先分析非負(fù)數(shù)對應(yīng)的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負(fù)數(shù)”的概率.【詳解】當(dāng)是非負(fù)數(shù)時,,區(qū)間長度是,又因為對應(yīng)的區(qū)間長度是,所以“恰好為非負(fù)數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標(biāo)事件對應(yīng)的區(qū)間長度.16、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18、(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點的坐標(biāo),求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大??;
(2)設(shè)棱B1C1上的一點P,由向量共線得到P點的坐標(biāo),然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點的坐標(biāo).試題解析:解(1)如圖,以為原點建立空間直角坐標(biāo)系,則,.,故與棱所成的角是.(2)為棱中點,設(shè),則.設(shè)平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標(biāo)為.點睛:本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.19、(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標(biāo)0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應(yīng)用,屬于中檔題.20、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024旅行社旅游門票代理銷售合同3篇
- 2024年門窗安裝工程合同協(xié)議書
- 2024美容院美容設(shè)備升級改造采購合同3篇
- 2024普法宣傳:民法典婚姻家庭編法律風(fēng)險管理合同3篇
- 拆遷工程模板施工合同
- 翻譯人才聘用合同律師
- 農(nóng)場租賃合同范本:農(nóng)業(yè)創(chuàng)造
- 體育館看臺吊頂改造合同
- 微納光纖光場調(diào)控器件研究與應(yīng)用
- 兩類熱傳導(dǎo)方程反問題正則化探討
- 城市園林綠化養(yǎng)護(hù)管理標(biāo)準(zhǔn)規(guī)范
- 腳手架工程安全管理風(fēng)險辨識及防范措施
- 廈門物業(yè)管理若干規(guī)定
- 2023年10月自考00055企業(yè)會計學(xué)真題及答案含評分標(biāo)準(zhǔn)
- 【語文】上海市三年級上冊期末復(fù)習(xí)試題(含答案)
- 遙感技術(shù)基礎(chǔ)第二版課后答案
- 微型消防站應(yīng)急器材點檢維護(hù)記錄
- 八段錦操作評分標(biāo)準(zhǔn)
- 十六烷安全技術(shù)說明書(msds)
- Stevens-Johnson綜合征及中毒性表皮壞死松解癥課件
- 北京版一年級數(shù)學(xué)下冊《數(shù)的組成》評課稿
評論
0/150
提交評論