版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.2.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.23.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.35.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.26.設分別為的三邊的中點,則()A. B. C. D.7.已知,則的大小關系為()A. B. C. D.8.函數(shù)fxA. B.C. D.9.若復數(shù)滿足,則()A. B. C. D.10.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.11.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.612.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.14.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.15.已知等差數(shù)列的前n項和為Sn,若,則____.16.某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.①2至3月份的收入的變化率與11至12月份的收入的變化率相同;②支出最高值與支出最低值的比是6:1;③第三季度平均收入為50萬元;④利潤最高的月份是2月份.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂校唬áⅲ┤?,求的數(shù)學期望的最大值.20.(12分)已知函數(shù).(1)討論的單調性;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)設函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.22.(10分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.2、B【解析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.3、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.4、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學生的計算能力,是一道基礎題.5、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.6、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.7、A【解析】
根據(jù)指數(shù)函數(shù)的單調性,可得,再利用對數(shù)函數(shù)的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數(shù)性質比較大小,注意與特殊數(shù)的對比,屬于基礎題..8、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及x→09、C【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的除法運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,是基礎題.10、B【解析】
利用函數(shù)的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調性、不等式性質的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.11、C【解析】
利用導數(shù)法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數(shù)的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.12、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.14、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.15、【解析】
由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數(shù)列前n項和的性質,相對不難.16、①②③【解析】
通過圖片信息直接觀察,計算,找出答案即可.【詳解】對于①,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確.對于②,支出最高值是2月份60萬元,支出最低值是5月份的10萬元,故支出最高值與支出最低值的比是6:1,正確.對于③,第三季度的7,8,9月每個月的收入分別為40萬元,50萬元,60萬元,故第三季度的平均收入為50萬元,正確.對于④,利潤最高的月份是3月份和10月份都是30萬元,高于2月份的利潤是80﹣60=20萬元,錯誤.故答案為①②③.【點睛】本題考查利用圖象信息,分析歸納得出正確結論,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2).【解析】
(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.【點睛】很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉化為求二面角的平面角問題考查考生的空間想象能力.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.19、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數(shù)學期望,考查計算能力.20、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼鏡行業(yè)銷售人才聘用合同
- 美容美發(fā)合作社股東權益書
- 煙草設備使用與保養(yǎng)條例
- 游戲機租賃合同
- 鄭州家居裝修前后房產買賣合同
- 宗教墓地砂石道路鋪設施工合同
- 電梯安裝安全合同協(xié)議書
- 2024年04月北京民生銀行信用卡中心科技管理部社會招考(415)筆試歷年參考題庫附帶答案詳解
- 廣安2024年四川廣安市廣安區(qū)農業(yè)農村局農技推廣服務特聘人員招募6人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年04月云南交通銀行信用卡中心昆明分中心校園招考筆試歷年參考題庫附帶答案詳解
- 框架結構設計國內外研究現(xiàn)狀
- 智研咨詢-物業(yè)服務行業(yè)市場調查、產業(yè)鏈全景、需求規(guī)模預測報告(2024版)
- 湖北省隨州市曾都區(qū)2023-2024學年九年級上學期期末考試英語試題
- 滬科版九年級物理上冊期末考試及答案【匯編】
- 2023-2024學年人教版七年級下冊地理知識清單
- 中國土地制度智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 手術物品準備完善率
- 2024年西藏自治區(qū)中考地理真題(原卷版)
- 成人高考JAVA程序設計(考試復習資料)
- MOOC 電路理論-華中科技大學 中國大學慕課答案
- 物流園區(qū)運營管理承包合同樣本
評論
0/150
提交評論