2021-2022學(xué)年浙江省麗水地區(qū)四校高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年浙江省麗水地區(qū)四校高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年浙江省麗水地區(qū)四校高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年浙江省麗水地區(qū)四校高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年浙江省麗水地區(qū)四校高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,.若存在,且為函數(shù)的一個零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.2.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.3.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.4.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.5.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.6.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.7.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點(diǎn),若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.48.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時的值為()A.2020 B.20l9 C.2018 D.20179.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]10.設(shè)為的兩個零點(diǎn),且的最小值為1,則()A. B. C. D.11.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.812.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線右支上的動點(diǎn),且周長的最小值為8,則雙曲線的實(shí)軸長為________,離心率為________.14.圓關(guān)于直線的對稱圓的方程為_____.15.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.16.若點(diǎn)為點(diǎn)在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點(diǎn)是線段上一動點(diǎn),.給出下列四個結(jié)論:①為的重心;②;③當(dāng)時,平面;④當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請?jiān)冢?)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).18.(12分)已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線與軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請說明理由.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識,高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望20.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點(diǎn)E,F(xiàn)是線段PC中點(diǎn),G為線段EC中點(diǎn).Ⅰ求證:平面PBD;Ⅱ求證:.22.(10分)山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計(jì)入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.682

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)椋?,所以為奇函?shù),當(dāng)時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖冢?,所以,化簡得,所以,即令,因?yàn)闉楹瘮?shù)的一個零點(diǎn),所以在時有一個零點(diǎn)因?yàn)楫?dāng)時,,所以函數(shù)在時單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r有一個零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.2.C【解析】

連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.3.D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點(diǎn)睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.4.D【解析】

由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時,有最小正值為.故選:D【點(diǎn)睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5.C【解析】

根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.6.A【解析】

畫圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.7.C【解析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.8.B【解析】

根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時,,,,,當(dāng)時,,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.9.D【解析】

設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點(diǎn)睛】本題考查了向量的運(yùn)算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10.A【解析】

先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點(diǎn)睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.11.A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.12.C【解析】

兩復(fù)數(shù)相等,實(shí)部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.22【解析】

設(shè)雙曲線的右焦點(diǎn)為,根據(jù)周長為,計(jì)算得到答案.【詳解】設(shè)雙曲線的右焦點(diǎn)為.周長為:.當(dāng)共線時等號成立,故,即實(shí)軸長為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線周長的最值問題,離心率,實(shí)軸長,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.14.【解析】

求出圓心關(guān)于直線的對稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對稱點(diǎn)設(shè)為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對稱點(diǎn)坐標(biāo).15.【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時,等號成立,此時.故答案為:.【點(diǎn)睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.16.①②③【解析】

①點(diǎn)在平面內(nèi)的正投影為點(diǎn),而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點(diǎn),連接,則點(diǎn)在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當(dāng)點(diǎn)到平面的距離最大時,三棱錐的體積最大,而當(dāng)點(diǎn)與點(diǎn)重合時,點(diǎn)到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因?yàn)?,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當(dāng)與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點(diǎn)睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】

(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo).【詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當(dāng)且僅當(dāng)即,即,即時取等號;故P(,)時視角∠EPF最大,答:P(,)時,視角∠EPF最大.【點(diǎn)睛】本題主要考查圓錐曲線的實(shí)際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進(jìn)行求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18.(1)(2)存在,或.【解析】

(1)由得看成到兩定點(diǎn)的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時,設(shè)直線點(diǎn)斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點(diǎn)的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個端點(diǎn),不成立;當(dāng)直線的斜率存在時,設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點(diǎn)睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時,可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.19.(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點(diǎn)睛】本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20.(1)見解析;(2).【解析】

(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以.又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論