版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第04練基本不等式(精練)【A組
在基礎(chǔ)中考查功底】一、單選題1.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最小值是(
)A.7 B.9 C.12 D.SKIPIF1<0【答案】C【分析】已知函數(shù)SKIPIF1<0,且SKIPIF1<0,符合基本不等式的條件,根據(jù)基本不等式即可求和的最小值.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0,故選:C.2.(2023·陜西渭南·統(tǒng)考一模)已知SKIPIF1<0,則SKIPIF1<0取得最小值時(shí)SKIPIF1<0的值為(
)A.3 B.2 C.4 D.5【答案】A【分析】根據(jù)基本不等式求最值,考查等號(hào)成立的條件即可求解.【詳解】SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故選:A3.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0有(
)A.最大值0 B.最小值0 C.最大值-4 D.最小值-4【答案】C【分析】利用均值不等式求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0有最大值SKIPIF1<0,故選:C4.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是各項(xiàng)均為正數(shù)的等差數(shù)列,且SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.10 B.20 C.25 D.50【答案】C【分析】根據(jù)等差數(shù)列的性質(zhì),化簡(jiǎn)原式,得到SKIPIF1<0,用基本不等式求最值.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,由已知,得SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故選:C.5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.6 B.8 C.10 D.12【答案】A【分析】將原式整理為SKIPIF1<0,然后利用基本不等式求最值即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅的SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故選:A.6.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】C【分析】首先根據(jù)已知條件得到SKIPIF1<0,再利用基本不等式的性質(zhì)求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立.故選:C7.(2023秋·湖北十堰·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0得SKIPIF1<0,巧用常數(shù)的關(guān)系即可求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立.故選:C.二、多選題8.(2023春·江蘇揚(yáng)州·高三揚(yáng)州市新華中學(xué)??奸_學(xué)考試)已知第一象限內(nèi)的點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】首先根據(jù)題意得到SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,再利用基本不等式和二次函數(shù)的性質(zhì)依次判斷選項(xiàng)即可.【詳解】依題意,有SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.對(duì)選項(xiàng)A,因此SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立.故選項(xiàng)A正確;對(duì)選項(xiàng)B,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選項(xiàng)B錯(cuò)誤;對(duì)選項(xiàng)C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選項(xiàng)C錯(cuò)誤,對(duì)選項(xiàng)D,SKIPIF1<0SKIPIF1<0,故選項(xiàng)D正確.故選:AD9.(2023春·云南昆明·高三云南省昆明市第十二中學(xué)校考階段練習(xí))十六世紀(jì)中葉,英國(guó)數(shù)學(xué)加雷科德在《礪智石》一書中先把“=”作為等號(hào)使用,后來(lái)英國(guó)數(shù)學(xué)家哈利奧特首次使用“<”和“>”符號(hào),并逐步被數(shù)學(xué)界接受,不等號(hào)的引入對(duì)不等式的發(fā)展影響深遠(yuǎn),若SKIPIF1<0,則下面結(jié)論正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0有最小值SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0有最大值1【答案】ABD【分析】利用不等式性質(zhì)判斷A;利用“1”的妙用計(jì)算判斷B;確定b的取值范圍,求出SKIPIF1<0范圍作答;利用均值不等式計(jì)算判斷D作答.【詳解】對(duì)于A,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),B正確;對(duì)于C,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,C不正確;對(duì)于D,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),D正確.故選:ABD10.(2023春·江蘇鎮(zhèn)江·高三??奸_學(xué)考試)若SKIPIF1<0,則下列選項(xiàng)中成立的是(
)A.SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0的最小值為1 D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【答案】AB【分析】根據(jù)基本不等式,求解判斷各個(gè)選項(xiàng)即可.【詳解】由基本不等式可得,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以A項(xiàng)正確;因?yàn)镾KIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0,所以SKIPIF1<0,B項(xiàng)正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0無(wú)解,所以該式取不到1,C項(xiàng)錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立,D項(xiàng)錯(cuò)誤.故選:AB.三、填空題(共0分11.(2023·全國(guó)·高三專題練習(xí))如圖,在長(zhǎng)方體SKIPIF1<0中,點(diǎn)E,F(xiàn)分別在棱SKIPIF1<0,SKIPIF1<0上,且SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】2【分析】建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,表示出SKIPIF1<0,SKIPIF1<0,根據(jù)垂直得到SKIPIF1<0,即可得到SKIPIF1<0,再分SKIPIF1<0和SKIPIF1<0兩種情況討論,最后利用基本不等式計(jì)算可得.【詳解】解:以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所在直線分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),顯然不符合題意當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<012.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為_______________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,利用基本不等式計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立.故SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<013.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【分析】利用基本不等式求得正確答案.【詳解】由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<014.(2023·上海·統(tǒng)考模擬預(yù)測(cè))已知正實(shí)數(shù)a、b滿足SKIPIF1<0,則SKIPIF1<0的最大值為_______________.【答案】SKIPIF1<0【分析】由SKIPIF1<0,代入即可得出答案.【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)“SKIPIF1<0”,即SKIPIF1<0時(shí)取等,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0【B組
在綜合中考查能力】一、單選題1.(2023·重慶沙坪壩·高三重慶南開中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
).A.4 B.6 C.8 D.12【答案】A【分析】利用基本不等式和消元思想對(duì)本題目進(jìn)行求解.【詳解】解:已知SKIPIF1<0,且xy+2x+y=6,y=SKIPIF1<02x+y=2x+SKIPIF1<0=2(x+1)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故2x+y的最小值為4.故選:A2.(2023春·浙江寧波·高三校聯(lián)考階段練習(xí))非零實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0成等差數(shù)列,可將SKIPIF1<0用SKIPIF1<0表示,再將所求化簡(jiǎn),利用基本不等式即可得解.【詳解】因?yàn)镾KIPIF1<0成等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.3.(2023春·河北唐山·高三開灤第一中學(xué)??茧A段練習(xí))已知圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】求出圓心坐標(biāo),進(jìn)而求出a,b的關(guān)系,再利用基本不等式中“1”的妙用求解作答.【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,依題意,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,因此SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.4.(2023·全國(guó)·模擬預(yù)測(cè))已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.1 C.2 D.4【答案】C【分析】先根據(jù)對(duì)數(shù)的運(yùn)算得SKIPIF1<0,再利用基本不等式求解.【詳解】由正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),故選:C5.(2023·全國(guó)·高三專題練習(xí))“不以規(guī)矩,不能成方圓”出自《孟子·離婁章句上》.“規(guī)”指圓規(guī),“矩”指由相互垂直的長(zhǎng)短兩條直尺構(gòu)成的方尺,是古人用來(lái)測(cè)量?畫圓和方形圖案的工具.敦煌壁畫就有伏羲女媧手執(zhí)規(guī)矩的記載(如圖(1)).今有一塊圓形木板,以“矩”量之,如圖(2).若將這塊圓形木板截成一塊四邊形形狀的木板,且這塊四邊形木板的一個(gè)內(nèi)角SKIPIF1<0滿足SKIPIF1<0,則這塊四邊形木板周長(zhǎng)的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】作出圖形,利用余弦定理結(jié)合基本不等式可求得這個(gè)矩形周長(zhǎng)的最大值.【詳解】由題圖(2)得,圓形木板的直徑為SKIPIF1<0.設(shè)截得的四邊形木板為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如下圖所示.由SKIPIF1<0且SKIPIF1<0可得SKIPIF1<0,在SKIPIF1<0中,由正弦定理得SKIPIF1<0,解得SKIPIF1<0.在SKIPIF1<0中,由余弦定理,得SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.在SKIPIF1<0中,SKIPIF1<0,由余弦定理可得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,因此,這塊四邊形木板周長(zhǎng)的最大值為SKIPIF1<0.故選:D.二、多選題6.(2023春·河北石家莊·高三校聯(lián)考開學(xué)考試)下列說(shuō)法正確的是(
)A.若SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為SKIPIF1<0B.若實(shí)數(shù)a,b滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是3C.若實(shí)數(shù)a,b滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值是4D.若實(shí)數(shù)a,b滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是1【答案】BD【分析】結(jié)合均值不等式求解.對(duì)A,SKIPIF1<0,調(diào)整式子;對(duì)B,SKIPIF1<0,“1”的妙用;對(duì)C,SKIPIF1<0,組成不等式求解;對(duì)D,令SKIPIF1<0,則SKIPIF1<0.【詳解】對(duì)A,SKIPIF1<0,函數(shù)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),即函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,A錯(cuò);對(duì)B,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取等號(hào),則SKIPIF1<0的最小值是3,B對(duì);對(duì)C,SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),C錯(cuò);對(duì)D,SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),D對(duì).故選:BD7.(2023·全國(guó)·高三專題練習(xí))已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則下列說(shuō)法正確的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】設(shè)SKIPIF1<0,可得SKIPIF1<0與SKIPIF1<0之間的等式關(guān)系,再用換底公式進(jìn)行變形,可得SKIPIF1<0分子相同,通過(guò)化簡(jiǎn)SKIPIF1<0,判斷正負(fù),即可判斷A;同理可判斷SKIPIF1<0大小,即可判斷B;分別化簡(jiǎn)SKIPIF1<0,即可判斷C;對(duì)SKIPIF1<0進(jìn)行化簡(jiǎn),用對(duì)數(shù)運(yùn)算法則,展開后,再用基本不等式即可判斷D.【詳解】解:取SKIPIF1<0,所以有SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選項(xiàng)A錯(cuò)誤;因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選項(xiàng)B正確;因?yàn)镾KIPIF1<0,故選項(xiàng)C錯(cuò)誤;因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等,顯然等號(hào)不成立,故SKIPIF1<0,故選項(xiàng)D正確.故選:BD三、填空題8.(2023·山東日照·山東省日照實(shí)驗(yàn)高級(jí)中學(xué)??寄M預(yù)測(cè))已知正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】構(gòu)造函數(shù)SKIPIF1<0,利用單調(diào)性可得SKIPIF1<0,再利用均值不等式即可求解.【詳解】由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0是正實(shí)數(shù),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,故答案為:SKIPIF1<09.(2023·江西鷹潭·統(tǒng)考一模)SKIPIF1<0的內(nèi)角SKIPIF1<0的對(duì)邊分別為SKIPIF1<0,若SKIPIF1<0,且A為銳角,則當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0的值為___________.【答案】SKIPIF1<0【分析】根據(jù)正弦定理將表達(dá)式邊化角變形,結(jié)合正弦和角公式即可求得SKIPIF1<0,結(jié)合同角三角函數(shù)關(guān)系式求得SKIPIF1<0,代入余弦定理表示出SKIPIF1<0,代入SKIPIF1<0中由基本不等式即可求得最小值,并求得取最小值時(shí)SKIPIF1<0關(guān)系,進(jìn)而求得SKIPIF1<0的值.【詳解】由正弦定理將SKIPIF1<0變形可得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,而SKIPIF1<0是銳角,所以SKIPIF1<0,則由余弦定理可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<010.(2023·天津?yàn)I海新·天津市濱海新區(qū)塘沽第一中學(xué)??寄M預(yù)測(cè))平面四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0點(diǎn),以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,根據(jù)已知得出點(diǎn)以及向量的坐標(biāo),根據(jù)SKIPIF1<0,得出SKIPIF1<0,然后根據(jù)基本不等式“1”的代換,即可得出答案.【詳解】過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0點(diǎn).因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.如圖,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),分別以SKIPIF1<0所在的直線為SKIPIF1<0軸,建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以有SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0.四、解答題11.(2023春·寧夏銀川·高三銀川一中??茧A段練習(xí))設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:(Ⅰ)ab+bc+acSKIPIF1<0SKIPIF1<0;(Ⅱ)SKIPIF1<0.【答案】(Ⅰ)證明見解析;(II)證明見解析.【詳解】(Ⅰ)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,由題設(shè)得,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.(Ⅱ)因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.本題第(Ⅰ)(Ⅱ)兩問(wèn),都可以由均值不等式,相加即得到.在應(yīng)用均值不等式時(shí),注意等號(hào)成立的條件:“一正二定三相等”.【考點(diǎn)定位】本小題主要考查不等式的證明,熟練基礎(chǔ)知識(shí)是解答好本類題目的關(guān)鍵.【C組
在創(chuàng)新中考查思維】一、單選題1.(2023秋·河北邢臺(tái)·高三統(tǒng)考期末)若SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0的最小值為SKIPIF1<0 B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最小值為16 D.SKIPIF1<0沒有最小值【答案】A【分析】先將題意整理成SKIPIF1<0,然后利用基本不等式可得到SKIPIF1<0,最后檢驗(yàn)SKIPIF1<0是否成立即可【詳解】由SKIPIF1<0,得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.由SKIPIF1<0得SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上至少一個(gè)零點(diǎn),此時(shí)SKIPIF1<0,故存在SKIPIF1<0,使得不等式SKIPIF1<0中的等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:這道題關(guān)鍵的地方在于檢驗(yàn)SKIPIF1<0是否成立,需要構(gòu)造SKIPIF1<0,并結(jié)合零點(diǎn)存在定理進(jìn)行驗(yàn)證2.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,正實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.1 B.2 C.4 D.SKIPIF1<0【答案】B【分析】先判斷函數(shù)是嚴(yán)格遞減的函數(shù),且有對(duì)稱中心,找出SKIPIF1<0之間的關(guān)系可求.【詳解】SKIPIF1<0,故函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,又SKIPIF1<0在SKIPIF1<0上嚴(yán)格遞減;SKIPIF1<0即SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得.故選:B.二、多選題3.(2023·浙江·校聯(lián)考三模)已知SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】對(duì)于A、B選項(xiàng),利用條件構(gòu)造SKIPIF1<0,比值換元將問(wèn)題轉(zhuǎn)化為單變量函數(shù)求值域問(wèn)題;對(duì)于C、D選項(xiàng),構(gòu)造函數(shù)SKIPIF1<0通過(guò)分析單調(diào)性判斷即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0綜上SKIPIF1<0,SKIPIF1<0,即B正確;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0)的零點(diǎn)y滿足SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0.所以要證SKIPIF1<0,即證SKIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以即證SKIPIF1<0而SKIPIF1<0所以SKIPIF1<0成立,即SKIPIF1<0成立,C正確因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,AD錯(cuò)誤.故選:B、C.4.(2023·全國(guó)·高三專題練習(xí))設(shè)正數(shù)SKIPIF1<0滿足SKIPIF1<0,則有(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】ACD【分析】對(duì)于A,由基本不等式推論可判斷選項(xiàng);對(duì)于B,利用分解因式結(jié)合A分析可判斷選項(xiàng);對(duì)于C,SKIPIF1<0,利用基本不等式可判斷選項(xiàng);對(duì)于D,SKIPIF1<0,利用基本不等式可判斷選項(xiàng).【詳解】對(duì)于A,由基本不等式推論有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等號(hào).故A正確.對(duì)于B,SKIPIF1<0,由A分析可知SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等號(hào).故B正確.對(duì)于C,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).故C正確.對(duì)于D,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).故D正確.故選:ACD三、填空題5.(2023·重慶沙坪壩·高三重慶八中??茧A段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)SKIPIF1<0在拋物線上,且滿足SKIPIF1<0,設(shè)弦SKIPIF1<0的中點(diǎn)M到y(tǒng)軸的距離為d,則SKIPIF1<0的最小值為__________.【答案】1【分析】設(shè)SKIPIF1<0,利用余弦定理表示出SKIPIF1<0,利用拋物線定義結(jié)合梯形中位線性質(zhì)表示出SKIPIF1<0,從而可得SKIPIF1<0的表達(dá)式,進(jìn)而利用基本不等式化簡(jiǎn),可求得答案.【詳解】由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)營(yíng)林及木竹采伐機(jī)械制造行業(yè)應(yīng)用態(tài)勢(shì)與發(fā)展趨勢(shì)分析研究報(bào)告(2024-2030版)
- 中國(guó)聚芳硫醚砜產(chǎn)業(yè)需求態(tài)勢(shì)及前景動(dòng)態(tài)預(yù)測(cè)研究報(bào)告(2024-2030版)
- 中國(guó)考種儀市場(chǎng)生產(chǎn)策略與供需前景分析研究報(bào)告(2024-2030版)
- 機(jī)器視覺方向課程設(shè)計(jì)
- 中國(guó)粘膠纖維行業(yè)發(fā)展動(dòng)態(tài)及經(jīng)營(yíng)模式分析研究報(bào)告(2024-2030版)
- 中國(guó)空氣壓縮機(jī)制造行業(yè)發(fā)展格局與未來(lái)前景預(yù)測(cè)研究報(bào)告(2024-2030版)
- 中國(guó)熱軋薄寬鋼帶行業(yè)發(fā)展概況與投資前景機(jī)會(huì)分析研究報(bào)告(2024-2030版)
- 中國(guó)淋膜紙行業(yè)需求狀況及銷售趨勢(shì)預(yù)測(cè)研究報(bào)告(2024-2030版)
- 建筑建模課課程設(shè)計(jì)
- 軟件課程設(shè)計(jì)電子郵件
- GRS化學(xué)品管理手冊(cè)
- 第1章 跨境電商概述
- 部編版2024-2025學(xué)年九年級(jí)語(yǔ)文上學(xué)期第一次月考試卷含答案
- TSHUA 2023-0002 無(wú)人機(jī)飛控系統(tǒng)適航性檢驗(yàn)檢測(cè)技術(shù)規(guī)范
- 2024-2025學(xué)年七年級(jí)道德與法治上冊(cè) 第二單元 單元測(cè)試卷(人教陜西版)
- 畜牧學(xué)基礎(chǔ)知識(shí)題庫(kù)100道及答案(完整版)
- 人教版數(shù)學(xué)八年級(jí)上冊(cè)14.3.2《平方差公式》說(shuō)課稿
- 50以內(nèi)加減運(yùn)算口算題卡600道
- 變電站工程施工作業(yè)四措一案
- 2024漢服趨勢(shì)白皮書-京東
- 工業(yè)循環(huán)冷卻水中鋅離子測(cè)定方法
評(píng)論
0/150
提交評(píng)論