2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年黑龍江省牡丹江市達(dá)標(biāo)名校中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.2.如圖所示,點(diǎn)E在AC的延長(zhǎng)線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°3.太原市出租車的收費(fèi)標(biāo)準(zhǔn)是:白天起步價(jià)8元(即行駛距離不超過3km都需付8元車費(fèi)),超過3km以后,每增加1km,加收1.6元(不足1km按1km計(jì)),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費(fèi)為16元,那么x的最大值是()A.11 B.8 C.7 D.54.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.5.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.6.近兩年,中國(guó)倡導(dǎo)的“一帶一路”為沿線國(guó)家創(chuàng)造了約180000個(gè)就業(yè)崗位,將180000用科學(xué)記數(shù)法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1047.一個(gè)半徑為24的扇形的弧長(zhǎng)等于20π,則這個(gè)扇形的圓心角是()A.120° B.135° C.150° D.165°8.-4的絕對(duì)值是()A.4 B. C.-4 D.9.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實(shí)數(shù)D.可能為負(fù)數(shù)10.2012﹣2013NBA整個(gè)常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯(cuò)誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.填在下列各圖形中的三個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.12.如圖,把一個(gè)面積為1的正方形分成兩個(gè)面積為的長(zhǎng)方形,再把其中一個(gè)面積為的長(zhǎng)方形分成兩個(gè)面積為的正方形,再把其中一個(gè)面積為的正方形分成兩個(gè)面積為的長(zhǎng)方形,如此進(jìn)行下去……,試用圖形揭示的規(guī)律計(jì)算:__________.13.新田為實(shí)現(xiàn)全縣“脫貧摘帽”,2018年2月已統(tǒng)籌整合涉農(nóng)資金235000000元,撬動(dòng)800000000元金融資本參與全縣脫貧攻堅(jiān)工作,請(qǐng)將235000000用科學(xué)記數(shù)法表示為___.14.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點(diǎn),BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.15.唐老師為了了解學(xué)生的期末數(shù)學(xué)成績(jī),在班級(jí)隨機(jī)抽查了10名學(xué)生的成績(jī),其統(tǒng)計(jì)數(shù)據(jù)如下表:分?jǐn)?shù)(單位:分)10090807060人數(shù)14212則這10名學(xué)生的數(shù)學(xué)成績(jī)的中位數(shù)是_____分.16.為響應(yīng)“書香成都”建設(shè)的號(hào)召,在全校形成良好的人文閱讀風(fēng)尚,成都市某中學(xué)隨機(jī)調(diào)查了部分學(xué)生平均每天的閱讀時(shí)間,統(tǒng)計(jì)結(jié)果如圖所示,則在本次調(diào)查中,閱讀時(shí)間的中位數(shù)是________小時(shí).三、解答題(共8題,共72分)17.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長(zhǎng).18.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);如圖2,D為AB上一點(diǎn),且滿足AE=AD,過點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.19.(8分)《九章算術(shù)》中有一道闡述“盈不足術(shù)”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數(shù),物價(jià)各幾何?譯文為:現(xiàn)有一些人共同買一個(gè)物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個(gè)物品的價(jià)格是多少?請(qǐng)解答上述問題.20.(8分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當(dāng)陽光與水平線成45°角時(shí),測(cè)得旗桿AB落在坡上的影子BD的長(zhǎng)為8米,落在墻上的影子CD的長(zhǎng)為6米,求旗桿AB的高(結(jié)果保留根號(hào)).21.(8分)已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△OAB的頂點(diǎn)A、B的坐標(biāo)分別是A(0,5),B(3,1),過點(diǎn)B畫BC⊥AB交直線y=-m(m>54)于點(diǎn)C,連結(jié)AC,以點(diǎn)A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點(diǎn)D,連結(jié)AD(1)求證:△ABC≌△AOD.(2)設(shè)△ACD的面積為s,求s關(guān)于m的函數(shù)關(guān)系式.(3)若四邊形ABCD恰有一組對(duì)邊平行,求m的值.22.(10分)如圖,在直角坐標(biāo)系xOy中,直線與雙曲線相交于A(-1,a)、B兩點(diǎn),BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.23.(12分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E,過點(diǎn)E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長(zhǎng).24.如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是弧的中點(diǎn),AE與BC交于點(diǎn)F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點(diǎn)A作AF⊥DE于F,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點(diǎn)A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB.2、C【解析】

由平行線的判定定理可證得,選項(xiàng)A,B,D能證得AC∥BD,只有選項(xiàng)C能證得AB∥CD.注意掌握排除法在選擇題中的應(yīng)用.【詳解】A.∵∠3=∠A,本選項(xiàng)不能判斷AB∥CD,故A錯(cuò)誤;B.∵∠D=∠DCE,∴AC∥BD.本選項(xiàng)不能判斷AB∥CD,故B錯(cuò)誤;C.∵∠1=∠2,∴AB∥CD.本選項(xiàng)能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項(xiàng)不能判斷AB∥CD,故D錯(cuò)誤.故選:C.【點(diǎn)睛】考查平行線的判定,掌握平行線的判定定理是解題的關(guān)鍵.3、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價(jià)2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點(diǎn)睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.4、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.5、A【解析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點(diǎn)睛】本題考查1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì),綜合性較強(qiáng),掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.6、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】180000=1.8×105,故選A.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.7、C【解析】

這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)弧長(zhǎng)公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個(gè)扇形的圓心角為150°.故選C.【點(diǎn)睛】本題考查了弧長(zhǎng)公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).8、A【解析】

根據(jù)絕對(duì)值的概念計(jì)算即可.(絕對(duì)值是指一個(gè)數(shù)在坐標(biāo)軸上所對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值.)【詳解】根據(jù)絕對(duì)值的概念可得-4的絕對(duì)值為4.【點(diǎn)睛】錯(cuò)因分析:容易題.選錯(cuò)的原因是對(duì)實(shí)數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.9、A【解析】

利用配方法,根據(jù)非負(fù)數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點(diǎn)睛】本題考查配方法的應(yīng)用,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握配方法.10、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機(jī)會(huì)的大小的概念,只是表示發(fā)生的機(jī)會(huì)的大小,機(jī)會(huì)大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項(xiàng)正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項(xiàng)錯(cuò)誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項(xiàng)錯(cuò)誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項(xiàng)錯(cuò)誤。故選A。二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個(gè)圖形開始,左下數(shù)字減上面數(shù)字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.12、【解析】

結(jié)合圖形發(fā)現(xiàn)計(jì)算方法:,即計(jì)算其面積和的時(shí)候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點(diǎn)睛】此題注意結(jié)合圖形的面積找到計(jì)算的方法:其中的面積和等于總面積減去剩下的面積.13、2.35×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將235000000用科學(xué)記數(shù)法表示為:2.35×1.故答案為:2.35×1.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.14、4【解析】

首先根據(jù)矩形的性質(zhì)以及垂線的性質(zhì)得到∠FDC=∠ABE,進(jìn)而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點(diǎn),BE=3,∴tan∠FDC=43.故答案為【點(diǎn)睛】本題主要考查了銳角三角函數(shù)的關(guān)系以及矩形的性質(zhì),根據(jù)已知得出tan∠FDC=tan∠AEB是解題關(guān)鍵.15、1【解析】

根據(jù)中位數(shù)的概念求解即可.【詳解】這組數(shù)據(jù)按照從小到大的順序排列為:60,60,70,80,80,90,90,90,90,100,則中位數(shù)為:=1.故答案為:1.【點(diǎn)睛】本題考查了中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).16、1【解析】由統(tǒng)計(jì)圖可知共有:8+19+10+3=40人,中位數(shù)應(yīng)為第20與第21個(gè)的平均數(shù),而第20個(gè)數(shù)和第21個(gè)數(shù)都是1(小時(shí)),則中位數(shù)是1小時(shí).故答案為1.三、解答題(共8題,共72分)17、(1)證明見解析;(2)4.8.【解析】

(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對(duì)的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點(diǎn)睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識(shí)點(diǎn),熟練運(yùn)算這些知識(shí)是解決問題的關(guān)鍵.18、(1)3+【解析】

(1)如圖1中,在AB上取一點(diǎn)M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長(zhǎng)線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點(diǎn)M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵M(jìn)B=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長(zhǎng)線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題.19、共有7人,這個(gè)物品的價(jià)格是53元.【解析】

根據(jù)題意,找出等量關(guān)系,列出一元一次方程.【詳解】解:設(shè)共有x人,這個(gè)物品的價(jià)格是y元,解得答:共有7人,這個(gè)物品的價(jià)格是53元.【點(diǎn)睛】本題考查了二元一次方程的應(yīng)用.20、旗桿AB的高為(4+1)m.【解析】試題分析:過點(diǎn)C作CE⊥AB于E,過點(diǎn)B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長(zhǎng)度.在Rt△ACE中,求出AE、CE的長(zhǎng)度,繼而可求得AB的長(zhǎng)度.試題解析:解:過點(diǎn)C作CE⊥AB于E,過點(diǎn)B作BF⊥CD于F,過點(diǎn)B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.21、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點(diǎn)間的距離公式計(jì)算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點(diǎn)B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽R(shí)t△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當(dāng)AB∥CD時(shí),則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當(dāng)AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點(diǎn)B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽R(shí)t△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當(dāng)AB∥CD時(shí),則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當(dāng)AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點(diǎn):相似形綜合題.22、(1)m=-1,n=-1;(2)y=-x+【解析】

(1)由直線與雙曲線相交于A(-1,a)、B兩點(diǎn)可得B點(diǎn)橫坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(1,0),再根據(jù)△AOC的面積為1可求得點(diǎn)A的坐標(biāo),從而求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論