2021-2022學年福建省龍巖高中高三適應性調(diào)研考試數(shù)學試題含解析_第1頁
2021-2022學年福建省龍巖高中高三適應性調(diào)研考試數(shù)學試題含解析_第2頁
2021-2022學年福建省龍巖高中高三適應性調(diào)研考試數(shù)學試題含解析_第3頁
2021-2022學年福建省龍巖高中高三適應性調(diào)研考試數(shù)學試題含解析_第4頁
2021-2022學年福建省龍巖高中高三適應性調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1002.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.3.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-4.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績?nèi)鐖D所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人5.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.7.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.8.函數(shù)在的圖象大致為()A. B.C. D.9.集合的真子集的個數(shù)是()A. B. C. D.10.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結論:①在上單調(diào)遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④12.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足,則的展開式中的系數(shù)為______.14.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。16.過點,且圓心在直線上的圓的半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.18.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.19.(12分)已知函數(shù),設的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.20.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(?。┊?月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850721.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學生分析問題的能力,難度容易.2.C【解析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結合思想,考查邏輯推理能力和運算求解能力。3.A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.4.D【解析】

根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.5.A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.6.B【解析】

變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)7.B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數(shù)取值范圍的求法,屬于基礎題.8.B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.9.C【解析】

根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.10.A【解析】

設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于??碱}.11.A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.12.C【解析】

畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結合思想和運算能力,屬于??碱}.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.14.【解析】

根據(jù)圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點睛】本題主要考查三角函數(shù)周期的求解,結合圖象求出函數(shù)的解析式是解決本題的關鍵.15.或1【解析】

利用導數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。16.【解析】

根據(jù)弦的垂直平分線經(jīng)過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經(jīng)過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)求導.根據(jù)單調(diào),轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令.根據(jù),確定,將轉化為.令,用導數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設,則.因為,所以t為關于a的減函數(shù),所以..令,則.因為當時,在上為減函數(shù).所以當時,.從而,所以在上為減函數(shù).所以當時,.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.18.(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.19.(1)(2)不存在;詳見解析【解析】

(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數(shù),,使得,.【點睛】本題考查了分段函數(shù)的最值、基本不等式的應用,屬于基礎題.20.(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護措施有效【解析】

(1)根據(jù)散點圖即可判斷出結果.(2)設,則,求出,再由回歸方程過樣本中心點求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計算出誤差即可判斷回歸方程可靠;(ⅱ)當時,,與真實值作比較即可判斷有效.【詳解】(1)根據(jù)散點圖可知:適宜作為累計確診人數(shù)與時間變量的回歸方程類型;(2)設,則,,,;(3)(?。r,,,當時,,,當時,,,所以(2)的回歸方程可靠:(ⅱ)當時,,10150遠大于7111,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論