2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第1頁
2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第2頁
2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第3頁
2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第4頁
2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆福建省泉州市晉江四校高三第一次六校聯(lián)考數(shù)學(xué)試題試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.22.若集合,,則=()A. B. C. D.3.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.4.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.5.已知,,由程序框圖輸出的為()A.1 B.0 C. D.6.若,則的虛部是()A. B. C. D.7.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面8.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為()A. B.2 C. D.9.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.10.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.12.設(shè)全集,集合,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.15.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小值為______.16.若直線與直線交于點,則長度的最大值為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,問張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.18.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的面積.21.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.22.(10分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時,等式不是雙曲線的方程;當(dāng)時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎(chǔ)題.2、C【解析】試題分析:化簡集合故選C.考點:集合的運算.3、A【解析】

由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.4、D【解析】

因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.5、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.6、D【解析】

通過復(fù)數(shù)的乘除運算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.7、B【解析】

本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.8、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,,即.故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.9、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.10、A【解析】

計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點睛】本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.11、C【解析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當(dāng)且僅當(dāng),時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.12、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.14、【解析】

先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結(jié)果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設(shè)線段的中點為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.15、10【解析】

先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學(xué)期望.【詳解】(1)由題意,當(dāng)家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,所以要想領(lǐng)取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設(shè)事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學(xué)期望等概率與統(tǒng)計的基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應(yīng)用意識.18、(1)(2)證明見解析【解析】

(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進而可得與互補.【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.【點睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.19、(1)(2)【解析】

(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運算能力.20、(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.21、(1);(2)證明見解析.【解析】

(1)由題意求得的坐標(biāo),代入橢圓方程求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,可得關(guān)于的一元二次方程,設(shè)出的坐標(biāo),分別求出直線與直線的方程,從而求得兩點的縱坐標(biāo),利用根與系數(shù)關(guān)系可化簡證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設(shè)直線CD的方程為,代入,得:設(shè),,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論