版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省宜賓市翠屏區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn),使點(diǎn)B落在AB邊上點(diǎn)B′處,此時,點(diǎn)A的對應(yīng)點(diǎn)A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′2.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>03.如圖,從圓外一點(diǎn)引圓的兩條切線,,切點(diǎn)分別為,,如果,,那么弦AB的長是()A. B. C. D.4.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點(diǎn)C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點(diǎn)O,則線段AD1的長度為()A. B. C. D.45.如圖,在正方形OABC中,點(diǎn)A的坐標(biāo)是(﹣3,1),點(diǎn)B的縱坐標(biāo)是4,則B,C兩點(diǎn)的坐標(biāo)分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)6.計(jì)算﹣的結(jié)果為()A. B. C. D.7.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機(jī)在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.58.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠29.已知二次函數(shù)y=(x+a)(x﹣a﹣1),點(diǎn)P(x0,m),點(diǎn)Q(1,n)都在該函數(shù)圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<110.若一個正多邊形的每個內(nèi)角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡:______.12.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點(diǎn)D是AC邊上一動點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長度的最小值為___.13.某風(fēng)扇在網(wǎng)上累計(jì)銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_____.14.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)D為AB的中點(diǎn),將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,則D′B長為_____.15.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.16.在平面直角坐標(biāo)系xOy中,位于第一象限內(nèi)的點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,則cos∠AOA′=__.三、解答題(共8題,共72分)17.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點(diǎn)P為邊AB上一動點(diǎn),以P為圓心,BP為半徑的圓交邊BC于點(diǎn)Q.(1)求AB的長;(2)當(dāng)BQ的長為時,請通過計(jì)算說明圓P與直線DC的位置關(guān)系.18.(8分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點(diǎn)G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.19.(8分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點(diǎn)E,交BD于點(diǎn)F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.20.(8分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.21.(8分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.求該型號自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?若該型號自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號自行車降價(jià)多少元時,每月獲利最大?最大利潤是多少?22.(10分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點(diǎn)E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.圖1圖2圖3(1)思路梳理將△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線.易證△AFG,故EF,BE,DF之間的數(shù)量關(guān)系為;(2)類比引申如圖2,在圖1的條件下,若點(diǎn)E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.23.(12分)(8分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.24.如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對角線OB上時,OA′的長=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時,求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時,求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),A:∠與∠均為旋轉(zhuǎn)角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結(jié)論,故答案:C.【點(diǎn)睛】本題主要考查三角形旋轉(zhuǎn)后具有的性質(zhì),注意靈活運(yùn)用各條件2、C【解析】
首先求出P點(diǎn)坐標(biāo),進(jìn)而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是正確得出P點(diǎn)坐標(biāo).3、C【解析】
先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點(diǎn)睛】本題考查切線長定理,掌握切線長定理是解題的關(guān)鍵.4、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點(diǎn):1.旋轉(zhuǎn);2.勾股定理.5、A【解析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點(diǎn)A的坐標(biāo)是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點(diǎn)A的坐標(biāo)是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.6、A【解析】
根據(jù)分式的運(yùn)算法則即可【詳解】解:原式=,故選A.【點(diǎn)睛】本題主要考查分式的運(yùn)算。7、B【解析】
設(shè)大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設(shè)大正方形邊長為2,則小正方形邊長為1,因?yàn)槊娣e比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點(diǎn)睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.8、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D9、D【解析】分析:先求出二次函數(shù)的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數(shù)y=(x+a)(x﹣a﹣1),當(dāng)y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當(dāng)P在對稱軸的左側(cè)(含頂點(diǎn))時,y隨x的增大而減小,由m<n,得:0<x0≤;當(dāng)P在對稱軸的右側(cè)時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點(diǎn)睛:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解決本題的關(guān)鍵是利用二次函數(shù)的性質(zhì),要分類討論,以防遺漏.10、A【解析】
根據(jù)正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ),得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內(nèi)角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】分析:根據(jù)算術(shù)平方根的概念求解即可.詳解:因?yàn)?2=9所以=3.故答案為3.點(diǎn)睛:此題主要考查了算術(shù)平方根的意義,關(guān)鍵是確定被開方數(shù)是哪個正數(shù)的平方.12、﹣2【解析】
連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點(diǎn)E在以AB為直徑的O上,于是當(dāng)點(diǎn)O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計(jì)算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點(diǎn)E在以AB為直徑的O上,∵O的半徑為2,∴當(dāng)點(diǎn)O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點(diǎn)睛】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關(guān)鍵在于結(jié)合實(shí)際運(yùn)用圓的相關(guān)性質(zhì).13、1.57×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.14、.【解析】
試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點(diǎn)D為AB的中點(diǎn),∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點(diǎn):旋轉(zhuǎn)的性質(zhì).15、10<a≤10.【解析】
根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M(jìn)是AB的中點(diǎn),MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令A(yù)C=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實(shí)根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點(diǎn)睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強(qiáng),解題時,還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識點(diǎn).16、.【解析】
依據(jù)點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,即可得到A'O=1,AA'=2,AO=,進(jìn)而得出cos∠AOA′的值.【詳解】如圖所示,點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點(diǎn)睛】本題主要考查了平行投影以及平面直角坐標(biāo)系,過已知點(diǎn)向坐標(biāo)軸作垂線,然后求出相關(guān)的線段長,是解決這類問題的基本方法和規(guī)律.三、解答題(共8題,共72分)17、(1)AB長為5;(2)圓P與直線DC相切,理由詳見解析.【解析】
(1)過A作AE⊥BC于E,根據(jù)矩形的性質(zhì)得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結(jié)論;
(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質(zhì)得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質(zhì)得到PM=,根據(jù)切線的判定定理即可得到結(jié)論.【詳解】(1)過A作AE⊥BC于E,
則四邊形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)過P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
過P作PG⊥CD于G交AE于M,
∴GM=AD=1,∵DC⊥BC∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圓P與直線DC相切.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,矩形的判定和性質(zhì),相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.18、(1)見解析;(2)BG=BC+CG=1.【解析】
(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預(yù)備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長,那么BG的長也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.19、(1)見解析;(2)2+1.【解析】分析:(1)、根據(jù)中垂線的做法作出圖形,得出答案;(2)、根據(jù)中垂線和正方形的性質(zhì)得出DF、DE和EF的長度,從而得出答案.詳解:(1)如圖,EF為所作;(2)解:∵四邊形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,∴∠DEF=90°,∠EDF=∠EFD=15°,DE=EF=CD=2,∴DF=DE=2,∴△DEF的周長=DF+DE+EF=2+1.點(diǎn)睛:本題主要考查的是中垂線的性質(zhì),屬于基礎(chǔ)題型.理解中垂線的性質(zhì)是解題的關(guān)鍵.20、(1)見解析;(2)見解析.【解析】
連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點(diǎn)睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識.注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構(gòu)造直徑所對的圓周角是圓中的常見輔助線.21、(1)進(jìn)價(jià)為1000元,標(biāo)價(jià)為1500元;(2)該型號自行車降價(jià)80元出售每月獲利最大,最大利潤是26460元.【解析】分析:(1)設(shè)進(jìn)價(jià)為x元,則標(biāo)價(jià)是1.5x元,根據(jù)關(guān)鍵語句:按標(biāo)價(jià)九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標(biāo)價(jià)直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據(jù)利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進(jìn)價(jià),進(jìn)而得到標(biāo)價(jià);(2)設(shè)該型號自行車降價(jià)a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數(shù)關(guān)系式,再利用配方法求最值即可.詳解:(1)設(shè)進(jìn)價(jià)為x元,則標(biāo)價(jià)是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:進(jìn)價(jià)為1000元,標(biāo)價(jià)為1500元;(2)設(shè)該型號自行車降價(jià)a元,利潤為w元,由題意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴當(dāng)a=80時,w最大=26460,答:該型號自行車降價(jià)80元出售每月獲利最大,最大利潤是26460元.點(diǎn)睛:此題主要考查了二次函數(shù)的應(yīng)用,以及元一次方程的應(yīng)用,關(guān)鍵是正確理解題意,根據(jù)已知得出w與a的關(guān)系式,進(jìn)而求出最值.22、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得:計(jì)算即點(diǎn)共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;
(2)如圖2,同理作輔助線:把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;
(3)如圖3,同理作輔助線:把△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結(jié)論.試題解析:(1)思路梳理:如圖1,把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點(diǎn)F.D.
G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴23、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點(diǎn)坐標(biāo),用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;(1)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點(diǎn)D的坐標(biāo),從而根據(jù)三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點(diǎn)E,tan∠ABO==,∴OA=1,CE=3,∴點(diǎn)A的坐標(biāo)為(0,1)、點(diǎn)B的坐標(biāo)為C(4,0)、點(diǎn)C的坐標(biāo)為(﹣1,3),設(shè)直線AB的解析式為,則,解得:,故直線AB的解析式為,設(shè)反比例函數(shù)的解析式為(),將點(diǎn)C的坐標(biāo)代入,得3=,∴m=﹣3.∴該反比例函數(shù)的解析式為;(1)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,可得交點(diǎn)D的坐標(biāo)為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.24、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼鐵燒結(jié)廠除塵課程設(shè)計(jì)
- 軋制生產(chǎn)線課程設(shè)計(jì)
- 鍋爐課程設(shè)計(jì)的總結(jié)
- 音箱放大器課程設(shè)計(jì)
- 認(rèn)識地球校本課程設(shè)計(jì)
- 鵪鶉養(yǎng)殖課程設(shè)計(jì)思路
- 香水配比課程設(shè)計(jì)
- 表面工程學(xué)課程設(shè)計(jì)
- 音樂資源課程設(shè)計(jì)
- 現(xiàn)狀地形圖課程設(shè)計(jì)
- DB-T29-74-2018天津市城市道路工程施工及驗(yàn)收標(biāo)準(zhǔn)
- 小學(xué)一年級20以內(nèi)加減法混合運(yùn)算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機(jī)-基本病機(jī) 邪正盛衰講解
- 品管圈知識 課件
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險(xiǎn)防控PPT
- 充電樁采購安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
評論
0/150
提交評論