




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
煙臺市2024屆十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x2.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.3.某小組7名同學在一周內參加家務勞動的時間如下表所示,關于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()勞動時間(小時)33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.54.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..5.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣16.如圖是小明在物理實驗課上用量筒和水測量鐵塊A的體積實驗,小明在勻速向上將鐵塊提起,直至鐵塊完全露出水面一定高度的過程中,則下圖能反映液面高度h與鐵塊被提起的時間t之間的函數(shù)關系的大致圖象是()A. B. C. D.7.足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.48.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<39.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:2510.sin45°的值等于()A. B.1 C. D.11.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經(jīng)過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關系的圖象是()A. B.C. D.12.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大二、填空題:(本大題共6個小題,每小題4分,共24分.)13.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.14.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.15.計算:____________16.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.17.甲乙兩人8次射擊的成績如圖所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)18.如圖,A,B兩點被池塘隔開,不能直接測量其距離.于是,小明在岸邊選一點C,連接CA,CB,分別延長到點M,N,使AM=AC,BN=BC,測得MN=200m,則A,B間的距離為_____m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.20.(6分)如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數(shù)與反比例函數(shù)的表達式;當x>0時,比較kx+b與的大?。?1.(6分)解不等式組.22.(8分)在平面直角坐標系xOy中,點C是二次函數(shù)y=mx2+4mx+4m+1的圖象的頂點,一次函數(shù)y=x+4的圖象與x軸、y軸分別交于點A、B.(1)請你求出點A、B、C的坐標;(2)若二次函數(shù)y=mx2+4mx+4m+1與線段AB恰有一個公共點,求m的取值范圍.23.(8分)太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結果保留根號)24.(10分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸相交于點,與反比例函數(shù)的圖象相交于點,.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出時,的取值范圍;(3)在軸上是否存在點,使為等腰三角形,如果存在,請求點的坐標,若不存在,請說明理由.25.(10分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.26.(12分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?27.(12分)如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉,得到線段AE,連結EC.依題意補全圖形;求的度數(shù);若,,將射線DA繞點D順時針旋轉交EC的延長線于點F,請寫出求AF長的思路.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設頂點坐標為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.2、D【解析】
根據(jù)圓心角,弧,弦的關系定理可以得出===,根據(jù)圓心角和圓周角的關鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數(shù)值是解題的關鍵.3、A【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個人,∴第4個人的勞動時間為中位數(shù),所以中位數(shù)為4,故選A.【點睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.4、C【解析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.5、B【解析】
∵函數(shù)y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數(shù)y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數(shù)的平移不改變二次項的系數(shù);關鍵是根據(jù)上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.6、B【解析】根據(jù)題意,在實驗中有3個階段,①、鐵塊在液面以下,液面得高度不變;②、鐵塊的一部分露出液面,但未完全露出時,液面高度降低;③、鐵塊在液面以上,完全露出時,液面高度又維持不變;分析可得,B符合描述;故選B.7、B【解析】試題解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.8、A【解析】
先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.9、D【解析】試題分析:先根據(jù)平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.10、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應用,能熟記特殊角的三角函數(shù)值是解此題的關鍵,難度適中.11、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關系的圖象是選項D中的圖象.故選D.12、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】
作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質,勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.14、(-1,-6)【解析】
直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,
∴A1(-1,-2),
∵將點A1向下平移4個單位,得到點A2,
∴點A2的坐標是:(-1,-6).
故答案為:(-1,-6).【點睛】解決本題的關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).15、y【解析】
根據(jù)冪的乘方和同底數(shù)冪相除的法則即可解答.【詳解】【點睛】本題考查了冪的乘方和同底數(shù)冪相除,熟練掌握:冪的乘方,底數(shù)不變,指數(shù)相乘的法則及同底數(shù)冪相除,底數(shù)不變,指數(shù)相減是關鍵.16、1【解析】
先由DE∥BC,可證得△ADE∽△ABC,進而可根據(jù)相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質和判定,關鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.17、甲【解析】由圖表明乙這8次成績偏離平均數(shù)大,即波動大,而甲這8次成績,分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.18、1【解析】
∵AM=AC,BN=BC,∴AB是△ABC的中位線,∴AB=MN=1m,故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】
(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數(shù)法即可得出結論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結論;(2)同(1)②的方法,借助圖象即可得出結論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經(jīng)過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經(jīng)過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質,平行線的性質,對稱的性質,解題的關鍵是求出直線和拋物線的交點坐標.20、(1),;(2)當0<x<6時,kx+b<,當x>6時,kx+b>【解析】
(1)根據(jù)點A和點B的坐標求出一次函數(shù)的解析式,再求出C的坐標6,2),利用待定系數(shù)法求解即可求出解析式(2)由C(6,2)分析圖形可知,當0<x<6時,kx+b<,當x>6時,kx+b>【詳解】(1)S△AOB=OA?OB=1,∴OA=2,∴點A的坐標是(0,﹣2),∵B(1,0)∴∴∴y=x﹣2.當x=6時,y=×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=.(2)由C(6,2),觀察圖象可知:當0<x<6時,kx+b<,當x>6時,kx+b>.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于求出C的坐標21、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關鍵.22、(1)A(-4,0)和B(0,4);(2)或【解析】
(1)拋物線解析式配方后,確定出頂點C坐標,對于一次函數(shù)解析式,分別令x與y為0求出對應y與x的值,確定出A與B坐標;(2)分m>0與m<0兩種情況求出m的范圍即可.【詳解】解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,∴拋物線頂點坐標為C(-2,1),對于y=x+4,令x=0,得到y(tǒng)=4;y=0,得到x=-4,直線y=x+4與x軸、y軸交點坐標分別為A(-4,0)和B(0,4);(2)把x=-4代入拋物線解析式得:y=4m+1,①當m>0時,y=4m+1>0,說明拋物線的對稱軸左側總與線段AB有交點,∴只需要拋物線右側與線段AB無交點即可,如圖1所示,只需要當x=0時,拋物線的函數(shù)值y=4m+1<4,即,則當時,拋物線與線段AB只有一個交點;②當m<0時,如圖2所示,只需y=4m+1≥0即可,解得:,綜上,當或時,拋物線與線段AB只有一個交點.【點睛】此題考查了拋物線與x軸的交點,二次函數(shù)的性質,以及二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質是解本題的關鍵.23、【解析】
過點A作,垂足為G,利用三角函數(shù)求出CG,從而求出GD,繼而求出CD.連接FD并延長與BA的延長線交于點H,利用三角函數(shù)求出CH,由圖得出EH,再利用三角函數(shù)值求出EF.【詳解】過點A作,垂足為G.則,在中,,由題意,得,∴,連接FD并延長與BA的延長線交于點H.由題意,得.在中,,∴.在中,.答:支角鋼CD的長為45cm,EF的長為.考點:三角函數(shù)的應用24、(1);;(2)或;(3)存在,或或或.【解析】
(1)利用待定系數(shù)法求出反比例函數(shù)解析式,進而求出點C坐標,最后用再用待定系數(shù)法求出一次函數(shù)解析式;
(2)利用圖象直接得出結論;
(3)分、、三種情況討論,即可得出結論.【詳解】(1)一次函數(shù)與反比例函數(shù),相交于點,,∴把代入得:,∴,∴反比例函數(shù)解析式為,把代入得:,∴,∴點C的坐標為,把,代入得:,解得:,∴一次函數(shù)解析式為;(2)根據(jù)函數(shù)圖像可知:當或時,一次函數(shù)的圖象在反比例函數(shù)圖象的上方,∴當或時,;(3)存在或或或時,為等腰三角形,理由如下:過作軸,交軸于,∵直線與軸交于點,∴令得,,∴點A的坐標為,∵點B的坐標為,∴點D的坐標為,∴,①當時,則,,∴點P的坐標為:、;②當時,是等腰三角形,,平分,,∵點D的坐標為,∴點P的坐標為,即;③當時,如圖:設,則,在中,,,,由勾股定理得:,,解得:,,∴點P的坐標為,即,綜上所述,當或或或時,為等腰三角形.【點睛】本題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,利用圖象確定函數(shù)值滿足條件的自變量的范圍,等腰三角形的性質,勾股定理,解(1)的關鍵是待定系數(shù)法的應用,解(2)的關鍵是利用函數(shù)圖象確定x的范圍,解(3)的關鍵是分類討論.25、(1)b2(2)1【解析】分析:(1)、根據(jù)完全平方公式以及多項式的乘法計算法則將括號去掉,然后進行合并同類項即可得出答案;(2)、收下進行去分母,將其轉化為整式方程,從而得出方程的解,最后需要進行驗根.詳解:(1)解:原式=a2-2ab+b2-a2+2ab=b2;(2)解:,解得:x=1,經(jīng)檢驗x=1為原方程的根,所以原方程的解為x=1.點睛:本題主要考查的是多項式的乘法以及解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三七創(chuàng)新創(chuàng)業(yè)大賽
- 導尿操作技術教學
- 2023年河北省石家莊市普通高校高職單招職業(yè)技能測試題(含答案)
- 黨課十八屆三中全會精神解讀
- 計算機二級考試基礎試題及答案
- 中建二局裝飾裝修工程科技創(chuàng)效應用指南2020版
- 小班食品衛(wèi)生安全教育
- 膽囊炎的健康宣教
- 義務教育階段資助政策宣傳
- 透明細胞乳頭狀腎細胞癌的健康宣教
- (一模)2025年廣東省高三高考模擬測試 (一) 英語試卷(含官方答案及詳解)
- 退役軍人無人機培訓宣傳
- 退役軍人保密教育
- 交通運輸行業(yè)股權分配方案
- 中試平臺管理制度
- MOOC 跨文化交際通識通論-揚州大學 中國大學慕課答案
- (正式版)SHT 3078-2024 立式圓筒形料倉工程設計規(guī)范
- 《比薩斜塔》-完整版課件
- 統(tǒng)編版高二選擇性必修(中)《小二黑結婚》優(yōu)秀公開課獲獎教案優(yōu)質公開課獲獎教學設計
- 建筑節(jié)能技術課件
- 項目建設全過程管理經(jīng)典講義(PPT)
評論
0/150
提交評論