版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省岳陽市城區(qū)二十四校2024屆中考數(shù)學(xué)最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.化簡÷的結(jié)果是()A. B. C. D.2(x+1)2.下面調(diào)查方式中,合適的是()A.調(diào)查你所在班級同學(xué)的體重,采用抽樣調(diào)查方式B.調(diào)查烏金塘水庫的水質(zhì)情況,采用抽樣調(diào)査的方式C.調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學(xué)生的業(yè)余愛好,采用普查的方式3.如圖,數(shù)軸上的四個點A,B,C,D對應(yīng)的數(shù)為整數(shù),且AB=BC=CD=1,若|a|+|b|=2,則原點的位置可能是()A.A或B B.B或C C.C或D D.D或A4.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應(yīng)相等 B.三條邊對應(yīng)相等C.兩邊和它們的夾角對應(yīng)相等 D.三個角對應(yīng)相等5.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發(fā),走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米6.小明早上從家騎自行車去上學(xué),先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學(xué)校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關(guān)系如圖所示,放學(xué)后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學(xué)時一致,下列說法:①小明家距學(xué)校4千米;②小明上學(xué)所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學(xué)回家所用時間為15分鐘.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個7.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差8.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.把圖中的五角星圖案,繞著它的中心點O進行旋轉(zhuǎn),若旋轉(zhuǎn)后與自身重合,則至少旋轉(zhuǎn)()A.36° B.45° C.72° D.90°10.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.11.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b12.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形ABCD面積為40,點P在邊CD上,PE⊥AC,PF⊥BD,足分別為E,F(xiàn).若AC=10,則PE+PF=_____.14.不等式組的解集為,則的取值范圍為_____.15.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.
16.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.17.在數(shù)軸上與表示11的點距離最近的整數(shù)點所表示的數(shù)為_____.18.已知∠=32°,則∠的余角是_____°.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.20.(6分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當(dāng)他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.21.(6分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF22.(8分)某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進行了抽樣調(diào)查,具體過程如下:收集數(shù)據(jù)從八、九兩個年級各隨機抽取20名學(xué)生進行體質(zhì)健康測試,測試成績(百分制)如下:八年級7886748175768770759075798170748086698377九年級9373888172819483778380817081737882807040整理、描述數(shù)據(jù)將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):成績(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級人數(shù)0011171九年級人數(shù)1007102(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差八年級78.377.57533.6九年級7880.5a52.1(1)表格中a的值為______;請你估計該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?根據(jù)以上信息,你認(rèn)為哪個年級學(xué)生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)23.(8分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小(2)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小24.(10分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當(dāng)DC的長與△ABD底邊上的高相等時,求t的值.25.(10分)先化簡,再求值:,其中x=﹣1.26.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標(biāo);(2)連接BD,F(xiàn)為拋物線上一動點,當(dāng)∠FAB=∠EDB時,求點F的坐標(biāo);(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當(dāng)點P在x軸上,且PQ=MN時,求菱形對角線MN的長.27.(12分)一天,小華和小夏玩擲骰子游戲,他們約定:他們用同一枚質(zhì)地均勻的骰子各擲一次,如果兩次擲的骰子的點數(shù)相同則小華獲勝:如果兩次擲的骰子的點數(shù)的和是6則小夏獲勝.(1)請您列表或畫樹狀圖列舉出所有可能出現(xiàn)的結(jié)果;(2)請你判斷這個游戲?qū)λ麄兪欠窆讲⒄f明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
原式利用除法法則變形,約分即可得到結(jié)果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關(guān)鍵.2、B【解析】
由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.【詳解】A、調(diào)查你所在班級同學(xué)的體重,采用普查,故A不符合題意;B、調(diào)查烏金塘水庫的水質(zhì)情況,無法普查,采用抽樣調(diào)査的方式,故B符合題意;C、調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,調(diào)查范圍廣適合抽樣調(diào)查,故C不符合題意;D、要了解全市初中學(xué)生的業(yè)余愛好,調(diào)查范圍廣適合抽樣調(diào)查,故D不符合題意;故選B.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.3、B【解析】
根據(jù)AB=BC=CD=1,|a|+|b|=2,分四種情況進行討論判斷即可.【詳解】∵AB=BC=CD=1,∴當(dāng)點A為原點時,|a|+|b|>2,不合題意;當(dāng)點B為原點時,|a|+|b|=2,符合題意;當(dāng)點C為原點時,|a|+|b|=2,符合題意;當(dāng)點D為原點時,|a|+|b|>2,不合題意;故選:B.【點睛】此題主要考查了數(shù)軸以及絕對值,解題時注意:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值.4、D【解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應(yīng)的判定方法,不能由此判定三角形全等;故選D.5、D【解析】
根據(jù)圖中信息以及路程、速度、時間之間的關(guān)系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設(shè)乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【點睛】本題考查一次函數(shù)的應(yīng)用,行程問題等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題.6、C【解析】
從開始到A是平路,是1千米,用了3分鐘,則從學(xué)校到家門口走平路仍用3分鐘,根據(jù)圖象求得上坡(AB段)、下坡(B到學(xué)校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學(xué)校4千米,正確;②小明上學(xué)所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學(xué)回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標(biāo)表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應(yīng)解決.需注意計算單位的統(tǒng)一.7、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關(guān)鍵.8、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.9、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉(zhuǎn)角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉(zhuǎn)角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.10、A【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.11、A【解析】
根據(jù)這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數(shù)據(jù)即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關(guān)系是解答本題的關(guān)鍵.12、A【解析】
有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點睛】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】
由矩形的性質(zhì)可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【詳解】解:如圖,設(shè)AC與BD的交點為O,連接PO,
∵四邊形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案為4【點睛】本題考查了矩形的性質(zhì),利用三角形的面積關(guān)系解決問題是本題的關(guān)鍵.14、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.15、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.16、2.【解析】
由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設(shè)CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識圖.17、3【解析】11≈3.317,且11在3和4之間,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴11距離整數(shù)點3最近.18、58°【解析】
根據(jù)余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【點睛】本題考查余角,解題關(guān)鍵是掌握互為余角的兩個角的和為90度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2)【解析】
(1)根據(jù)三角形角平分線的定義,即可得到AD;
(2)過D作于DE⊥ABE,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.【詳解】解:(1)如圖所示,AD即為所求;
(2)如圖,過D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關(guān)定義知識是解答本題的關(guān)鍵.20、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.21、詳見解析【解析】
根據(jù)平行四邊形的性質(zhì)和已知條件證明△ABE≌△CDF,再利用全等三角形的性質(zhì):即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)22、(1)81;(2)108人;(3)見解析.【解析】
(1)根據(jù)眾數(shù)的概念解答;(2)求出九年級學(xué)生體質(zhì)健康的優(yōu)秀率,計算即可;(3)分別從不同的角度進行評價.【詳解】解:(1)由測試成績可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級學(xué)生體質(zhì)健康的優(yōu)秀率為:,九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為:180×60%=108(人),答:估計該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為108人;(3)①因為八年級學(xué)生的平均成績高于九年級的平均成績,且八年級學(xué)生成績的方差小于九年級的方差,所以八年級學(xué)生的體質(zhì)健康情況更好一些.②因為九年級學(xué)生的優(yōu)秀率(60%)高于八年級的優(yōu)秀率(40%),且九年級學(xué)生成績的眾數(shù)或中位數(shù)高于八年級的眾數(shù)或中位數(shù),所以九年級學(xué)生的體質(zhì)健康情況更好一些.【點睛】本題考查的是用樣本估計總體、方差、平均數(shù)、眾數(shù)和中位數(shù)的概念和性質(zhì),正確求出樣本的眾數(shù)、理解方差和平均數(shù)、眾數(shù)、中位線的性質(zhì)是解題的關(guān)鍵.23、(1)∠P=50°;(2)∠P=45°.【解析】
(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內(nèi)角和定理計算即可;
(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到AB⊥PA,根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關(guān)鍵.24、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點睛】本題考查圓的綜合題.25、-2.【解析】
根據(jù)分式的運算法化解即可求出答案.【詳解】解:原式=,當(dāng)x=﹣1時,原式=.【點睛】熟練運用分式的運算法則.26、(1),點D的坐標(biāo)為(2,-8)(2)點F的坐標(biāo)為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標(biāo).(3)分類討論,當(dāng)MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024橋梁加固工程承包合同范本3篇
- 2024年高端養(yǎng)殖場土地租賃及合作開發(fā)合同3篇
- 2024年采沙場租賃協(xié)議3篇
- 2025標(biāo)識牌生產(chǎn)與安裝一體化工程合同范本3篇
- 2024年網(wǎng)絡(luò)劇制作剪輯師招聘與管理協(xié)議3篇
- 公路車知識培訓(xùn)課件
- 《現(xiàn)代物流管理教程》課件
- 2024年采購協(xié)議:原材料及產(chǎn)品3篇
- 2024校秋季春季學(xué)期小賣部飲品及零食供應(yīng)與營銷合同3篇
- 鄭州工業(yè)應(yīng)用技術(shù)學(xué)院《互換性與公差配合》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025公司簡單勞務(wù)合同書范本
- 東風(fēng)集團新能源汽車培訓(xùn)
- 2024-2030年中國廣電技術(shù)行業(yè)現(xiàn)狀分析及未來發(fā)展趨勢預(yù)測報告
- 廣東省廣州市天河區(qū)2023-2024學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版)
- 鋼構(gòu)樓板合同范例
- 2024-2025學(xué)年人教版(2024)信息技術(shù)四年級上冊 第11課 嘀嘀嗒嗒的秘密 說課稿
- 造影劑過敏的護理
- 物流管理概論 課件全套 王皓 第1-10章 物流與物流管理的基礎(chǔ)知識 - 物流系統(tǒng)
- 蘇教版六年級上冊分?jǐn)?shù)四則混合運算100題帶答案
- 潛水員潛水作業(yè)安全2024
- 以案促改心得體會
評論
0/150
提交評論