版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列事件中,屬于必然事件的是()A.明天我市下雨B.拋一枚硬幣,正面朝上C.走出校門,看到的第一輛汽車的牌照的末位數(shù)字是偶數(shù)D.一個口袋中裝有2個紅球和一個白球,從中摸出2個球,其中有紅球2.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.3.下面是由幾個小正方體搭成的幾何體,則這個幾何體的左視圖為()A. B. C. D.4.如圖,函數(shù)y1=x﹣1和函數(shù)的圖象相交于點M(2,m),N(﹣1,n),若y1>y2,則x的取值范圍是()A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>25.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),說法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是拋物線上兩點,則y1>y2,其中說法正確的有()個.A.1 B.2 C.3 D.46.如圖是一個幾何體的三視圖,根據(jù)圖中提供的數(shù)據(jù),計算這個幾何體的表面積是()A. B. C. D.7.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.不能確定8.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)9.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.10.目前我國已建立了比較完善的經(jīng)濟困難學生資助體系,某校去年上半年發(fā)放給每個經(jīng)濟困難學生389元,今年上半年發(fā)放了438元.設(shè)每半年發(fā)放的資助金額的平均增長率為x,則下面列出的方程中正確的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=38911.一元二次方程的根是A. B. C., D.,12.下列函數(shù)中,是反比例函數(shù)的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一個小球由地面沿著坡度i=1:3的坡面向上前進了10m,此時小球距離地面的高度為_________m.14.如圖,將半徑為2,圓心角為90°的扇形BAC繞點A逆時針旋轉(zhuǎn)60°,點B、C的對應點分別為D、E,點D在上,則陰影部分的面積為_____.15.設(shè)、是方程的兩個實數(shù)根,則的值為_____.16.若點P(3,1)與點Q關(guān)于原點對稱,則點Q的坐標是___________.17.已知,是方程的兩實數(shù)根,則__.18.《道德經(jīng)》中的“道生一,一生二,二生三,三生萬物”道出了自然數(shù)的特征.在數(shù)的學習過程中,我們會對其中一些具有某種特性的數(shù)進行研究,如學習自然數(shù)時,我們研究了奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等.現(xiàn)在我們來研究另一種特珠的自然數(shù)——“純數(shù)”.定義:對于自然數(shù)n,在計算n+(n+1)+(n+2)時,各數(shù)位都不產(chǎn)生進位,則稱這個自然數(shù)n為“純數(shù)”,例如:32是“純數(shù)”,因為計算32+33+34時,各數(shù)位都不產(chǎn)生進位;23不是“純數(shù)”,因為計算23+24+25時,個位產(chǎn)生了進位.那么,小于100的自然數(shù)中,“純數(shù)”的個數(shù)為___________個.三、解答題(共78分)19.(8分)解方程:(1)2x2-4x-31=1;(2)x2-2x-4=1.20.(8分)如圖,已知直線與軸交于點,與軸交于點,拋物線經(jīng)過、兩點并與軸的另一個交點為,且.(1)求拋物線的解析式;(2)點為直線上方對稱軸右側(cè)拋物線上一點,當?shù)拿娣e為時,求點的坐標;(3)在(2)的條件下,連接,作軸于,連接、,點為線段上一點,點為線段上一點,滿足,過點作交軸于點,連接,當時,求的長.21.(8分)如圖,拋物線的頂點為,且拋物線與直線相交于兩點,且點在軸上,點的坐標為,連接.(1),,(直接寫出結(jié)果);(2)當時,則的取值范圍為(直接寫出結(jié)果);(3)在直線下方的拋物線上是否存在一點,使得的面積最大?若存在,求出的最大面積及點坐標.22.(10分)我們規(guī)定:方程的變形方程為.例如:方程的變形方程為.(1)直接寫出方程的變形方程;(2)若方程的變形方程有兩個不相等的實數(shù)根,求的取值范圍;(3)若方程的變形方程為,直接寫出的值.23.(10分)近期江蘇省各地均發(fā)布“霧霾”黃色預警,我市某口罩廠商生產(chǎn)一種新型口罩產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系滿足下表.銷售單價x(元/件)…20253040…每月銷售量y(萬件)…60504020…(1)請你從所學過的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個模型中確定哪種函數(shù)能比較恰當?shù)乇硎緔與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式為__________;(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?(3)如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?24.(10分)如圖,已知二次函數(shù)的圖象經(jīng)過點,.(1)求的值;(2)直接寫出不等式的解.25.(12分)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;(2)若點C是弧AB的中點,已知AB=4,求CE?CP的值.26.如圖1,拋物線y=﹣x2+bx+c交x軸于點A(-4,0)和點B,交y軸于點C(0,4).(1)求拋物線的函數(shù)表達式;(2)如圖2,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,當△ADC面積有最大值時,在拋物線對稱軸上找一點M,使DM+AM的值最小,求出此時M的坐標;(3)點Q在直線AC上的運動過程中,是否存在點Q,使△BQC為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)確定事件和隨機事件的概念對各個事件進行判斷即可.【詳解】解:明天我市下雨、拋一枚硬幣,正面朝上、走出校門,看到的第一輛汽車的牌照的末位數(shù)字是偶數(shù)都是隨機事件,一個口袋中裝有2個紅球和一個白球,從中摸出2個球,其中有紅球是必然事件,故選:D.【點睛】本題考查的是確定事件和隨機事件,事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的;在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件.2、B【解析】利用一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程,可求解.【詳解】解:A:,化簡后是:,不符合一元二次方程的定義,所以不是一元二次方程;
B:x2=0,是一元二次方程;
C:x2-2y=1含有兩個未知數(shù),不符合一元二次方程的定義,所以不是一元二次方程;
D:,分母含有未知數(shù),是一元一次方程,所以不是一元二次方程;
故選:B.【點睛】本題考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.3、D【分析】根據(jù)幾何體的三視圖的定義以及性質(zhì)進行判斷即可.【詳解】根據(jù)幾何體的左視圖的定義以及性質(zhì)得,這個幾何體的左視圖為故答案為:D.【點睛】本題考查了幾何體的三視圖,掌握幾何體三視圖的性質(zhì)是解題的關(guān)鍵.4、D【解析】析:根據(jù)反比例函數(shù)的自變量取值范圍,y1與y1圖象的交點橫坐標,可確定y1>y1時,x的取值范圍.解答:解:∵函數(shù)y1=x-1和函數(shù)y1=的圖象相交于點M(1,m),N(-1,n),∴當y1>y1時,那么直線在雙曲線的上方,∴此時x的取值范圍為-1<x<0或x>1.故選D.點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題的運用.關(guān)鍵是根據(jù)圖象的交點坐標,兩個函數(shù)圖象的位置確定自變量的取值范圍.5、D【分析】由拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a﹣b=0,則可對②進行判斷;根據(jù)拋物線與y軸的交點在x軸下方得到c<0,則abc<0,于是可對①進行判斷;由于x=﹣1時,y<0,則得到a﹣2a+c<0,則可對③進行判斷;通過點(﹣5,y1)和點(,y2)離對稱軸的遠近對④進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線對稱軸為直線x=﹣=﹣1,∴b=2a>0,則2a﹣b=0,所以②正確;∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc<0,所以①正確;∵x=﹣1時,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正確;∵點(﹣5,y1)離對稱軸要比點(,y2)離對稱軸要遠,∴y1>y2,所以④正確.故答案為D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,靈活運用二次函數(shù)解析式和圖像是解答本題的關(guān)鍵..6、A【分析】首先根據(jù)題目所給出的三視圖,判斷出該幾何體為個圓柱體,該圓柱體的底部圓的半徑為4,高為6,之后根據(jù)每個面分別求出表面積,再將面積進行求和,即可求出答案.【詳解】解:∵根據(jù)題目所給出的三視圖,判斷出該幾何體為個圓柱體,該圓柱體的底部圓的半徑為4,高為6,∴該幾何體的上、下表面積為:,該幾何體的側(cè)面積為:,∴總表面積為:,故選:A.【點睛】本題考查了幾何體的表面積,解題的關(guān)鍵在于根據(jù)三視圖判斷出幾何體的形狀,并把每個面的面積分別計算出來,掌握圓、長方體等面積的計算公式也是很重要的.7、B【分析】根據(jù)根的判別式(),求該方程的判別式,根據(jù)結(jié)果的正負情況即可得到答案.【詳解】解:根據(jù)題意得:△=22-4×1×(-1)
=4+4
=8>0,即該方程有兩個不相等的實數(shù)根,
故選:B.【點睛】本題考查了根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.8、A【分析】直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設(shè)NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.9、C【解析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).10、B【詳解】解:因為每半年發(fā)放的資助金額的平均增長率為x,去年上半年發(fā)放給每個經(jīng)濟困難學生389元,去年下半年發(fā)放給每個經(jīng)濟困難學生389(1+x)元,則今年上半年發(fā)放給每個經(jīng)濟困難學生389(1+x)(1+x)=389(1+x)2元.據(jù)此,由題設(shè)今年上半年發(fā)放了1元,列出方程:389(1+x)2=1.故選B.11、B【分析】方程兩邊開方,即可得出兩個一元一次方程,求出方程的解即可.【詳解】(x﹣2)2=0,則x1=x2=2,故選B.【點睛】本題主要考查了直接開平方法解一元二次方程,關(guān)鍵是掌握要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”來求解.12、B【解析】根據(jù)反比例函數(shù)的一般形式即可判斷.【詳解】A、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;B、是一次函數(shù),正確;C、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;D、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤.故選:B.【點睛】本題考查了反比例函數(shù)的定義,重點是將一般式y(tǒng)=(k≠0)轉(zhuǎn)化為y=kx?1(k≠0)的形式.二、填空題(每題4分,共24分)13、【詳解】如圖:Rt△ABC中,∠C=90°,i=tanA=1:3,AB=1.設(shè)BC=x,則AC=3x,根據(jù)勾股定理,得:,解得:x=(負值舍去).故此時鋼球距地面的高度是米.14、【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】連接BD,過點B作BN⊥AD于點N,∵將半徑為2,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=1,BN=,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案為.【點睛】考查了扇形面積求法以及等邊三角形的判定與性質(zhì),正確得出△ABD是等邊三角形是解題關(guān)鍵.15、-1【分析】根據(jù)根與系數(shù)的關(guān)系可得出,,將其代入中即可得出結(jié)論.【詳解】∵、是方程的兩個實數(shù)根,∴,,∴.故答案為-1.【點睛】本題考查了根與系數(shù)的關(guān)系,牢記“兩根之和等于,兩根之積等于”是解題的關(guān)鍵.16、(–3,–1)【分析】根據(jù)關(guān)于原點對稱的點的規(guī)律:縱橫坐標均互為相反數(shù)解答即可.【詳解】根據(jù)關(guān)于原點對稱的點的坐標的特點,可得:點P(3,1)關(guān)于原點過對稱的點Q的坐標是(–3,–1).故答案為:(–3,–1).【點睛】本題主要考查了關(guān)于原點對稱的點的坐標特點,解題時根據(jù)兩個點關(guān)于原點對稱時,它們的同名坐標互為相反數(shù)可直接得到答案,本題屬于基礎(chǔ)題,難度不大,注意平面直角坐標系中任意一點P(x,y),關(guān)于原點的對稱點是(–x,–y),即關(guān)于原點的對稱點,橫縱坐標都變成相反數(shù).17、1【分析】先根據(jù)一元二次方程根的定義得到,則可變形為,再根據(jù)根與系數(shù)的關(guān)系得到,,然后利用整體代入的方法計算代數(shù)式的值.【詳解】是方程的實數(shù)根,,,,,是方程的兩實數(shù)根,,,.故答案為1.【點睛】考查了根與系數(shù)的關(guān)系:若,是一元二次方程的兩根時,,.18、1【分析】根據(jù)題意,連續(xù)的三個自然數(shù)各位數(shù)字是0,1,2,其他位的數(shù)字為0,1,2,3時不會產(chǎn)生進位,然后根據(jù)這個數(shù)是幾位數(shù)進行分類討論,找到所有合適的數(shù).【詳解】解:當這個數(shù)是一位自然數(shù)時,只能是0,1,2,一共3個,當這個數(shù)是兩位自然數(shù)時,十位數(shù)字是1,2,3,個位數(shù)是0,1,2,一共9個,∴小于100的自然數(shù)中,“純數(shù)”共有1個.故答案是:1.【點睛】本題考查歸納總結(jié),解題的關(guān)鍵是根據(jù)題意理解“純數(shù)”的定義,總結(jié)方法找出所有小于100的“純數(shù)”.三、解答題(共78分)19、(1)x1=-3,x2=5;(2)x1=,x2=【分析】(1)利用等式的性質(zhì)將方程化簡,再利用因式分解法解得即可;(2)利用公式法求解即可.【詳解】解:(1)方程變形為:x2-2x-15=1,即(x+3)(x-5)=1,解得:x1=-3,x2=5;(2)由方程可得:a=1,b=-2,c=-4,∴==,∴x1=,x2=.【點睛】本題考查了一元二次方程的解法.解題的關(guān)鍵是選擇適當?shù)慕忸}方法,注意解題需細心.20、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐標,把A、B的坐標代入拋物線解析式,解方程組即可得出結(jié)論;(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.根據(jù)計算即可;(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①點E在F的左邊;②點E在F的右邊.【詳解】(3)當x=0時y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).當y=0時x=4,∴B(4,0).把A、B坐標代入得解得:,∴拋物線的解析式為.(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①當點E在F的左邊時,如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②當點E在F的右邊時,設(shè)AM交QE于N.如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.綜上所述:CP的值為3或.【點睛】本題是二次函數(shù)的綜合題目,涉及了相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì),解答本題需要我們熟練各個知識點的內(nèi)容,注意要分類討論.21、(1)1,-1,1;(2);(3)最大值為,點.【分析】(1)將代入求得k值,求得點A的坐標,再將A、B的坐標代入即可求得答案;(2)在圖象上找出拋物線在直線下方自變量的取值范圍即可;(3)設(shè)點P的坐標為,則點Q的坐標為,求得的長,利用三角形面積公式得到,然后根據(jù)二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)∵直線經(jīng)過點,∴,解得:,∵直線與x軸交于點A,令,則,點A的坐標為,∵拋物線與直線相交于兩點,∴,解得:,故答案為:,,;(2)∵拋物線與直線相交于A,兩點,觀察圖象,拋物線在直線下方時,,∴當時,則的取值范圍為:,故答案為:;(3)過點P作y軸的平行線交直線于點Q,設(shè)點P的坐標為,則點Q的坐標為,∴,,∴,當時,的面積有最大值為,此時P點坐標為;故答案為:面積有最大值為,P點坐標為;【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì),記住兩點間的距離公式;會運用數(shù)形結(jié)合的思想解決數(shù)學問題.22、(1);(2);(3)1【分析】(1)根據(jù)題目的規(guī)定直接寫出方程化簡即可.(2)先將方程變形,再根據(jù)判別式解出范圍即可.(3)先將變形前的方程列出來化簡求出a、b、c,相加即可求解.【詳解】(1)由題意得,化簡后得:.(2)若方程的變形方程為,即.由方程的變形方程有兩個不相等的實數(shù)根,可得方程的根的判別式,即.解得(3)變形前的方程為:,化簡后得:x2=0,∴a=1,b=0,c=0,∴a+b+c=1.【點睛】本題考查一元二次方程的運用,關(guān)鍵在于讀題根據(jù)規(guī)定變形即可.23、(1)y=﹣2x+100;(2)當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【分析】(1)直接利用待定系數(shù)法求出一次函數(shù)解析式;(2)根據(jù)利潤=銷售量×(銷售單價﹣成本),代入代數(shù)式求出函數(shù)關(guān)系式,令利潤z=41,求出x的值;(3)根據(jù)廠商每月的制造成本不超過51萬元,以及成本價18元,得出銷售單價的取值范圍,進而得出最大利潤.【詳解】解:(1)由表格中數(shù)據(jù)可得:y與x之間的函數(shù)關(guān)系式為:y=kx+b,把(20,60),(25,50)代入得:解得:故y與x之間的函數(shù)關(guān)系式為:y=﹣2x+100;(2)設(shè)總利潤為z,由題意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;當z=41時,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)∵廠商每月的制造成本不超過51萬元,每件制造成本為18元,∴每月的生產(chǎn)量為:小于等于=30萬件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴圖象開口向下,對稱軸右側(cè)z隨x的增大而減小,∴x=35時,z最大為:510萬元.當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【點睛】本題考查的是二次函數(shù)在實際生活中的應用,關(guān)鍵是根據(jù)題意求出二次函數(shù)的解析式以及利用增減性求出最值.24、(1),;(2)【解析】(1)將已知兩點代入拋物線解析式求出b與c的值即可;(2)根據(jù)圖象及拋物線與x軸的交點,得出不等式的解集即可.【詳解】(1)將,代入拋物線解析式得解得,(2)由(1)知拋物線解析式為:,對稱軸為,所以拋物線與x軸的另一交點坐標為(2,0)由圖象得:不等式的解為【點睛】本題考查待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)與不等式,熟練掌握待定系數(shù)法是解題關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商標權(quán)知識產(chǎn)權(quán)轉(zhuǎn)讓合同
- 債權(quán)轉(zhuǎn)讓合同范例
- 戶外廣告合同樣本格式模板
- 二手車輛買賣協(xié)議范本
- 2024年接送服務合同標準范本
- 股份協(xié)議書合同股份協(xié)議書2024年
- 房屋買賣代理合同范文
- 2024年離婚協(xié)議書官方范本
- 2024年購買香蕉的買賣合同范本
- 2024年居間公司股份轉(zhuǎn)讓合同
- 實驗五脊髓反射的基本特征和反射弧的分析
- 材料類專業(yè)虛擬仿真實驗項目建設(shè)與應用
- 關(guān)于鑄牢中華民族共同體意識發(fā)言材料【六篇】
- 產(chǎn)品報價流程
- 考勤表(A4打印-通用-簡潔)
- 粉塵爆炸風險評估記錄-危險源辨識與評價表
- 余華讀書分享+名著導讀《我們生活在巨大的差距里》
- 煙花爆竹行業(yè)職業(yè)病危害因素識別與防控培訓
- 《讀書的重要性》課件
- 天津市南開區(qū)2023-2024學年七年級上學期期中生物試卷
- 混凝土采購組織供應、運輸、售后服務方案
評論
0/150
提交評論