2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題含解析_第1頁
2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題含解析_第2頁
2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題含解析_第3頁
2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題含解析_第4頁
2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學(xué)九上數(shù)學(xué)期末達標檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結(jié)論:①②③④關(guān)于的方程有一個根為其中正確的結(jié)論個數(shù)有()A.1個 B.2個 C.3個 D.4個2.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結(jié)論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.43.二次函數(shù)的圖象向上平移個單位得到的圖象的解析式為()A. B. C. D.4.在Rt△ABC中,∠C=90°,若sin∠A=,則cosB=()A. B. C. D.5.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.6.在反比例函數(shù)的圖象的每個象限內(nèi),y隨x的增大而增大,則k值可以是()A.-1 B.1 C.2 D.37.已知扇形的圓心角為60°,半徑為1,則扇形的弧長為()A. B.π C. D.8.如圖,在平面直角坐標系中,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)9.已知等腰三角形的腰和底的長分別是一元二次方程x2﹣4x+3=0的根,則該三角形的周長可以是()A.5 B.7 C.5或7 D.1010.如圖已知CD為⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數(shù)是60°,則∠C的度數(shù)是()A.25° B.40° C.30° D.50°二、填空題(每小題3分,共24分)11.拋物線的頂點坐標是______.12.已知二次根式有意義,則滿足條件的的最大值是______.13.在Rt△ABC中,AC:BC=1:2,則sinB=______.14.在一次夏令營中,小亮從位于點的營地出發(fā),沿北偏東60°方向走了到達地,然后再沿北偏西30°方向走了若干千米到達地,測得地在地南偏西30°方向,則、兩地的距離為_________.15.如圖,以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′的面積比是_____.16.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是17.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.18.如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為_____.三、解答題(共66分)19.(10分)2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.月份x…3456…售價y1/元…12141618…(1)求y1與x之間的函數(shù)關(guān)系式.(2)求y2與x之間的函數(shù)關(guān)系式.(3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?20.(6分)2019年10月1日,是新中國70周年的生日,在首都北京天安門廣場舉行了盛大的建國70周年大閱兵,接受的檢閱,令國人振奮,令世界矚目.在李克強總理莊嚴的指令下,56門禮炮,70響轟鳴,述說著56個民族,70載春華秋實的拼搏!圖1是禮炮圖片,圖2是禮炮抽象示意圖.已知:是水平線,,,的仰角分別是30°和10°,,,且.(1)求點的鉛直高度;(2)求兩點的水平距離.(結(jié)果精確到,參考數(shù)據(jù):)21.(6分)如圖,在直角坐標系中,矩形的頂點、分別在軸和軸正半軸上,點的坐標是,點是邊上一動點(不與點、點重合),連結(jié)、,過點作射線交的延長線于點,交邊于點,且,令,.(1)當(dāng)為何值時,?(2)求與的函數(shù)關(guān)系式,并寫出的取值范圍;(3)在點的運動過程中,是否存在,使的面積與的面積之和等于的面積.若存在,請求的值;若不存在,請說明理由.22.(8分)如圖,為了測量山腳到塔頂?shù)母叨龋吹拈L),某同學(xué)在山腳處用測角儀測得塔頂?shù)难鼋菫?,再沿坡度為的小山坡前進400米到達點,在處測得塔頂?shù)难鼋菫?(1)求坡面的鉛垂高度(即的長);(2)求的長.(結(jié)果保留根號,測角儀的高度忽略不計).23.(8分)在一個不透明的盒子里裝有4個標有1,2,3,4的小球,它們形狀、大小完全相同.小明從盒子里隨機取出一個小球,記下球上的數(shù)字,作為點P的橫坐標x,放回然后再隨機取出一個小球,記下球上的數(shù)字,作為點P的縱坐標y.(1)畫樹狀圖或列表,寫出點P所有可能的坐標;(2)求出點P在以原點為圓心,5為半徑的圓上的概率.24.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(﹣3,0)和點B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.25.(10分)已知,關(guān)于的方程的兩個實數(shù)根.(1)若時,求的值;(2)若等腰的一邊長,另兩邊長為、,求的周長.26.(10分)如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;(3)求△ABC的面積.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當(dāng)x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;由OA=OC,得到方程有一個根為-c,設(shè)另一根為x,則=2,解方程可得x=4+c即可判斷④;從而可得出答案.【詳解】由圖象開口向下,可知a<0,與y軸的交點在x軸的下方,可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,故①正確;由圖象可知當(dāng)x=3時,y>0,∴9a+3b+c>0,故②錯誤;由圖象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正確;∵OA=OC,∴方程有一個根為-c,設(shè)另一根為x.∵對稱軸為直線x=2,∴=2,解得:x=4+c.故④正確;綜上可知正確的結(jié)論有三個.故選C.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.2、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標判斷結(jié)論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)圖象以及頂點坐標找出之間的關(guān)系是解題的關(guān)鍵.3、B【分析】直接根據(jù)“上加下減”的原則進行解答即可.【詳解】由“上加下減”的原則可知,把二次函數(shù)y=x2的圖象向上平移2個單位,得到的新圖象的二次函數(shù)解析式是:y=x2+2.故答案選B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是熟練的掌握二次函數(shù)圖象與幾何變換.4、A【分析】根據(jù)正弦和余弦的定義解答即可.【詳解】解:如圖,在Rt△ABC中,∠C=90°,∵sinA=,cosB=,∴cosB=.故選:A.【點睛】本題考查了銳角三角函數(shù)的定義,屬于應(yīng)知應(yīng)會題型,熟練掌握銳角三角函數(shù)的概念是解題關(guān)鍵.5、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關(guān).6、A【解析】因為的圖象,在每個象限內(nèi),y的值隨x值的增大而增大,所以k?1<0,即k<1.故選A.7、D【解析】試題分析:根據(jù)弧長公式知:扇形的弧長為.故選D.考點:弧長公式.8、D【分析】根據(jù)切線的判定在網(wǎng)格中作圖即可得結(jié)論.【詳解】解:如圖,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標是(6,2).故選:D.【點睛】本題考查了切線的判定,掌握切線的判定定理是解題的關(guān)鍵.9、B【解析】先通過解方程求出等腰三角形兩邊的長,然后利用三角形三邊關(guān)系確定等腰三角形的腰和底的長,進而求出三角形的周長.本題解析:x2-4x+3=0(x?3)(x?1)=0,x?3=0或x?1=0,所以x?=3,x?=1,當(dāng)三角形的腰為3,底為1時,三角形的周長為3+3+1=7,當(dāng)三角形的腰為1,底為3時不符合三角形三邊的關(guān)系,舍去,所以三角形的周長為7.故答案為7.考點:解一元二次方程-因式分解法,三角形三邊關(guān)系,等腰三角形的性質(zhì)10、C【分析】利用平行線的性質(zhì)求出∠AOD,然后根據(jù)圓周角定理可得答案.【詳解】解:∵DE∥OA,∴∠AOD=∠D=60°,∴∠C=∠AOD=30°,故選:C.【點睛】本題考查圓周角定理,平行線的性質(zhì),解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).【點睛】此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關(guān)鍵.12、【分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可求出x的最大值【詳解】∵二次根式有意義;∴3-4x≥0,解得x≤,∴x的最大值為;故答案為.【點睛】本題考查的是二次根式有意義的條件,熟知二次根式中的被開方數(shù)是非負數(shù)是解答此題的關(guān)鍵.13、或【分析】根據(jù)可知,因此分和兩種情況討論,當(dāng)時,;當(dāng)時,利用勾股定理求出斜邊AB,再由即可得.【詳解】(1)當(dāng)時,BC為斜邊,AC為所對的直角邊則(2)當(dāng)時,AB為斜邊,AC為所對的直角邊設(shè),則由勾股定理得:則綜上,答案為或.【點睛】本題考查了直角三角形中銳角三角函數(shù),熟記銳角三角函數(shù)的計算方法是解題關(guān)鍵.14、【分析】由已知可得到△ABC是直角三角形,從而根據(jù)三角函數(shù)即可求得AC的長.【詳解】解:如圖.由題意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.

∵EF//PQ,

∴∠1=∠EAB=60°

又∵∠2=30°,

∴∠ABC=180°?∠1?∠2=180°?60°?30°=90°,

∴△ABC是直角三角形.

又∵MN//PQ,

∴∠4=∠2=30°.

∴∠ACB=∠4+∠3=30°+30°=60°.

∴AC===(km),

故答案為.【點睛】本題考查了解直角三角形的相關(guān)知識,解答此類題目的關(guān)鍵是根據(jù)題意畫出圖形利用解直角三角形的相關(guān)知識解答.15、1:1.【解析】根據(jù)位似變換的性質(zhì)定義得到四邊形ABCD與四邊形A′B′C′D′相似,根據(jù)相似多邊形的性質(zhì)計算即可.【詳解】解:以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′相似,相似比為1:2,∴四邊形ABCD與四邊形A′B′C′D′的面積比是1:1,故答案為:1:1.【點睛】本題考查的是位似變換,如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形.16、.【分析】分別求出從1到6的數(shù)中3的倍數(shù)的個數(shù),再根據(jù)概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,共有6種結(jié)果,其中卡片上的數(shù)是3的倍數(shù)的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、【分析】作AB的中點E,連接EM,CE,AD根據(jù)三角形中位線的性質(zhì)和直角三角形斜邊中線等于斜邊一半求出EM和CE長,再根據(jù)三角形的三邊關(guān)系確定CM長度的范圍,從而確定CM的最小值.【詳解】解:如圖,取AB的中點E,連接CE,ME,AD,∵E是AB的中點,M是BD的中點,AD=2,∴EM為△BAD的中位線,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE為Rt△ACB斜邊的中線,∴,在△CEM中,,即,∴CM的最大值為.故答案為:.【點睛】本題考查了圓的性質(zhì),直角三角形的性質(zhì)及中位線的性質(zhì),利用三角形三邊關(guān)系確定線段的最值問題,構(gòu)造一個以CM為邊,另兩邊為定值的的三角形是解答此題的關(guān)鍵和難點.18、【分析】作BM⊥AC于M,交AD于F,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BF=CF,根據(jù)垂線段最短得出CF+EF≥BM,即可得出答案.【詳解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC邊上的中線,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C關(guān)于AD對稱,∴BF=CF,根據(jù)垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案為:.【點睛】本題考查了軸對稱?最短路線問題,關(guān)鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.三、解答題(共66分)19、(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,1月份銷售每千克豬肉所第獲得的利潤最大,最大利潤是11元1.【分析】(1)設(shè)與x之間的函數(shù)關(guān)系式為,將(3,12)(4,14)代入解方程組即可得到結(jié)論;

(2)由題意得到拋物線的頂點坐標為(3,9),設(shè)與x之間的函數(shù)關(guān)系式為:=,將(5,10)代入=得=10,解方程即可得到結(jié)論;

(3)由題意得到w=?=2x+6?+x?=?+x?,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】(1)設(shè)y1與x之間的函數(shù)關(guān)系式為y1=kx+b,將(3,12)(4,14)代入y1得,,解得:,∴y1與x之間的函數(shù)關(guān)系式為:y1=2x+6;(2)由題意得,拋物線的頂點坐標為(3,9),∴設(shè)y2與x之間的函數(shù)關(guān)系式為:y2=a(x﹣3)2+9,將(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,解得:a=,∴y2=(x﹣3)2+9=x2﹣x+;(3)由題意得,w=y(tǒng)1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,∵﹣<0,∴w由最大值,∴當(dāng)x=﹣=﹣=1時,w最大=﹣×12+×1﹣=1.【點睛】本題主要考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)求函數(shù)解析式、由相等關(guān)系得出利潤的函數(shù)解析式、利用二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.20、(1)點A的鉛直高度是2019mm;(2)A,E兩點的水平距離約為3529mm.【分析】(1)如圖,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分別為點G,H,M,利用求出AH的長,利用求出DM的長,從而求出AG的長,即點的鉛直高度;(2)利用求出CH的長,再利用求出EM,從而求出A,E兩點的水平距離.【詳解】如圖,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分別為點G,H,M.(1)在Rt△ACH中,∠ACH=30°,AC=AB﹣BC=1700∴∴AH=850在Rt△DEM中,∴DM≈357∴AG=AH+CD+DM≈850+812+357=2019∴點A的鉛直高度是2019mm.

(2)∵在Rt△ACH中,,∴CH≈1471∵在Rt△DEM中,,∴EM≈2058∴EG=EM+CH≈3529

∴A,E兩點的水平距離約為3529mm.【點睛】本題考查了三角函數(shù)的應(yīng)用,利用特殊三角函數(shù)的值求解線段長是解題的關(guān)鍵.21、(1)當(dāng)時,;(2)();(3)存在,.【分析】(1)由題意可知,當(dāng)OP⊥AP時,∽,∴,即,于是解得x值;(2)根據(jù)已知條件利用兩角對應(yīng)相等兩個三角形相似,證明三角形OCM和三角形PCO相似,得出對應(yīng)邊成比例即可得出結(jié)論;(3)假設(shè)存在x符合題意.過作于點,交于點,由與面積之和等于的面積,∴.然后求出ED,EF的長,再根據(jù)三角形相似:∽,求出MP的長,進而由上題的關(guān)系式求出符合條件的x.【詳解】解:(1)證明三角形OPC和三角形PAB相似是解決問題的關(guān)鍵,由題意知,,BC∥OA,∵,∴.∴.∴∽,∴,即,解得(不合題意,舍去).∴當(dāng)時,;(2)由題意可知,∥,∴.∵(已知),∴.∵,∴∽,∴對應(yīng)邊成比例:,即.∴,因為點是邊上一動點(不與點、點重合),且滿足∽,所以的取值范圍是.(3)假設(shè)存在符合題意.如圖所示,過作于點,交于點,則.∵與面積之和等于的面積,∴.∴.∵∥,∴∽.∴.即,解得.由(2)得,所以.解得(不合題意舍去).∴在點的運動過程中存在x,,使與面積之和等于的面積,此時.【點睛】1.相似三角形的判定與性質(zhì);2.矩形性質(zhì).22、(1)200;(2).【分析】(1)根據(jù)AB的坡度得,再根據(jù)∠BAH的正弦和斜邊長度即可解答;(2)過點作于點,得到矩形,再設(shè)米,再由∠DBE=60°的正切值,用含x的代數(shù)式表示DE的長,而矩形中,CE=BH=200米,可得DC的長,米,最后根據(jù)△ADC是等腰三角形即可解答.【詳解】解:(1)在中,,∴∴米(2)過點作于點,如圖:∴四邊形是矩形,∴米設(shè)米∴在中,米∴米在中∴米在中,,∴即解得∴米(本題也可通過證明矩形是正方形求解.)【點睛】本題考查解直角三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)表示出相關(guān)線段的長度.23、(1)列表見解析,P所有可能的坐標有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列舉出所有可能出現(xiàn)的情況,注意每一種情況出現(xiàn)的可能性是均等的,(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),由概率公式即可得出答案.【詳解】(1)由列表法列舉所有可能出現(xiàn)的情況:因此點P所有可能的坐標有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16種.(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),∴點P在以原點為圓心,5為半徑的圓上的概率為.【點睛】本題考查了列表法或樹狀圖法求等可能事件發(fā)生的概率,利用這種方法注意每一種情況出現(xiàn)的可能性是均等的.24、(1)y=﹣x2﹣x+1;(2)當(dāng)h=3時,△AEF的面積最大,最大面積是.(3)存在,當(dāng)h=時,點D的坐標為(,);當(dāng)h=時,點D的坐標為(,).【分析】(1)利用待定系數(shù)法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據(jù)S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數(shù)的性質(zhì)即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經(jīng)過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設(shè)經(jīng)過點A和點C的直線的解析式為y=mx+n,則,解得,∴經(jīng)過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當(dāng)h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設(shè)D(m,﹣3m+1).①當(dāng)BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當(dāng)MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當(dāng)h=時,點D的坐標為(,);當(dāng)h=時,點D的坐標為(,).【點睛】此題考查了待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)、勾股定理一次函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論