版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古鄂爾多斯市康巴什新區(qū)達標名校2024屆中考數(shù)學全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個2.下列計算正確的是()A.+= B.﹣= C.×=6 D.=43.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19984.如圖所示:有理數(shù)在數(shù)軸上的對應點,則下列式子中錯誤的是()A. B. C. D.5.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.6.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.17.如圖,若AB∥CD,則α、β、γ之間的關系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°8.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且9.下列二次根式中,與是同類二次根式的是()A. B. C. D.10.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.12.將一個底面半徑為2,高為4的圓柱形紙筒沿一條母線剪開,所得到的側面展開圖形面積為_____.13.因式分解:_______________________.14.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.15.七巧板是我國祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個梯形,若正方形ABCD的邊長為12cm,則梯形MNGH的周長是cm(結果保留根號).16.有一組數(shù)據:2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據的眾數(shù)是.三、解答題(共8題,共72分)17.(8分)如圖,⊙O的半徑為4,B為⊙O外一點,連結OB,且OB=6.過點B作⊙O的切線BD,切點為點D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為點C.(1)求證:AD平分∠BAC;(2)求AC的長.18.(8分)小馬虎做一道數(shù)學題,“已知兩個多項式,,試求.”其中多項式的二次項系數(shù)印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數(shù)“”;在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.19.(8分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.20.(8分)平面直角坐標系中(如圖),已知拋物線經過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.21.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.22.(10分)一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數(shù)字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數(shù)據如下表:摸球總次數(shù)1020306090120180240330450“和為8”出現(xiàn)的頻數(shù)210132430375882110150“和為8”出現(xiàn)的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進行下去,根據上表提供的數(shù)據,出現(xiàn)和為8的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)和為8的概率是________;如果摸出的2個小球上數(shù)字之和為9的概率是,那么x的值可以為7嗎?為什么?23.(12分)閱讀材料,解答問題.材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”問題:(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).24.為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據圖中所提供的信息,完成下列問題:本次調查的學生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據二次函數(shù)的性質和圖象可以判斷題目中各個小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號,故①錯誤,
x=-1和x=5時,函數(shù)值相等,故②錯誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當y=-2時,x=1或x=4,故④錯誤,
由圖象可得,當-1<x<5時,y<1,故⑤正確,
故選A.【點睛】考查二次函數(shù)圖象與系數(shù)的關系,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.2、B【解析】
根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.3、B【解析】
根據乘法分配律和有理數(shù)的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)混合運算的計算方法.4、C【解析】
從數(shù)軸上可以看出a、b都是負數(shù),且a<b,由此逐項分析得出結論即可.【詳解】由數(shù)軸可知:a<b<0,A、兩數(shù)相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【點睛】此題考查有理數(shù)的混合運算,數(shù)軸,解題關鍵在于結合數(shù)軸進行解答.5、C【解析】
根據左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.6、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.7、C【解析】
過點E作EF∥AB,如圖,易得CD∥EF,然后根據平行線的性質可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質,屬于??碱}型,作EF∥AB、熟練掌握平行線的性質是解題的關鍵.8、B【解析】
在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據根的情況求參數(shù),熟記判別式與根的關系是解題的關鍵.9、C【解析】
根據二次根式的性質把各個二次根式化簡,根據同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的定義,一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式.10、D【解析】
根據圓心角,弧,弦的關系定理可以得出===,根據圓心角和圓周角的關鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數(shù)值是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、48°【解析】
如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.12、【解析】試題分析:先根據勾股定理求得圓錐的母線長,再根據圓錐的側面積公式求解即可.由題意得圓錐的母線長則所得到的側面展開圖形面積.考點:勾股定理,圓錐的側面積公式點評:解題的關鍵是熟記圓錐的側面積公式:圓錐的側面積底面半徑母線.13、【解析】
先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.14、150【解析】設綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.15、24+24【解析】
仔細觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關系,則不難求得梯形的周長.【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點睛】此題主要考查學生對等腰梯形的性質及正方形的性質的運用及觀察分析圖形的能力.16、1【解析】根據平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據中1出現(xiàn)的次數(shù)最多,則這組數(shù)據的眾數(shù)為1.故答案為1.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AC=.【解析】(1)證明:連接OD.∵BD是⊙O的切線,∴OD⊥BD.∵AC⊥BD,∴OD∥AC,∴∠2=∠1.∵OA=OD.∴∠1=∠1,∴∠1=∠2,即AD平分∠BAC.(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,即.解得.18、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】
(1)根據整式加減法則可求出二次項系數(shù);(2)表示出多項式,然后根據的結果求出多項式,計算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數(shù)為-3.(2)A+C=,且A=,C=4,AC=【點睛】本題主要考查了多項式加減運算,熟練掌握運算法則是解題關鍵.19、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質等知識.利用分類討論思想并合理構造輔助線是解題的關鍵.20、(1),頂點P的坐標為;(2)E點坐標為;(3)Q點的坐標為.【解析】
(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標;(2)設,根據兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標;(3)直線交軸于,作于,如圖,利用得到,設,則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標.【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標為;(2)拋物線的對稱軸為直線,設,,,解得,E點坐標為;(3)直線交x軸于F,作MN⊥直線x=2于H,如圖,,而,,設,則,在中,,,整理得,解得(舍去),,Q點的坐標為.【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質和銳角三角函數(shù)的定義;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質,記住兩點間的距離公式.21、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.22、(1)出現(xiàn)“和為8”的概率是0.33;(2)x的值不能為7.【解析】
(1)利用頻率估計概率結合表格中數(shù)據得出答案即可;(2)假設x=7,根據題意先列出樹狀圖,得出和為9的概率,再與進行比較,即可得出答案.【詳解】解:(1)隨著試驗次數(shù)不斷增加,出現(xiàn)“和為8”的頻率逐漸穩(wěn)定在0.33,故出現(xiàn)“和為8”的概率是0.33.(2)x的值不能為7.理由:假設x=7,則P(和為9)=≠,所以x的值不能為7.【點睛】此題主要考查了利用頻率估計概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關鍵.23、(1)2,2;(2)2,理由見解析;(3)2.【解析】
(1)作P5H5垂直于x軸,垂足為H5,把四邊形P1P2P3P2和四邊形P2P3P2P5的轉化為SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3來求解;(2)(3)由圖可知,Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數(shù)解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,將四邊形面積轉化為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2來解答.【詳解】(1)作P5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 審計項目合作協(xié)議
- 老年醫(yī)療器械合同
- 涂料招商方案
- 版權共享合作合同
- 2024至2030年中國磁性材料工藝設備數(shù)據監(jiān)測研究報告
- 市場推廣合同
- 2024至2030年中國汽車用軸承數(shù)據監(jiān)測研究報告
- 項目工程開工典禮監(jiān)理發(fā)言稿
- 閣樓搭建合同書
- 復印機租賃服務合同
- NB-T33009-2021電動汽車充換電設施建設技術導則
- 【一例腦出血術后病例護理個案報告4100字(論文)】
- 拓展低空經濟應用場景實施方案
- 2024年六年級上冊教科版小學科學全冊教案全
- 鋼結構工程施工(第五版) 課件 單元六 鋼結構施工驗收
- 雨季施工安全措施
- 2024年安全月全員消防安全知識培訓
- 投資戰(zhàn)略合作協(xié)議書模板范本
- 部編版六年級年冊《第四單元習作 筆尖流出的故事》課件
- 神經內科護士進修匯報
- 2024年遼寧沈陽水務集團限公司社會公開招聘24公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
評論
0/150
提交評論