版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,點D,E分別在AB,AC上,DE∥BC,且DE將△ABC分成面積相等的兩部分,那么的值為()A.﹣1 B.+1 C.1 D.2.反比例函數(shù)y=的圖象與直線y=﹣x+2有兩個交點,且兩交點橫坐標(biāo)的積為負(fù)數(shù),則t的取值范圍是()A.t< B.t> C.t≤ D.t≥3.如圖方格紙中每個小正方形的邊長均為1,點P、A、C都在小正方形的頂點上.某人從點P出發(fā),沿過A、C、P三點的圓走一周,則這個人所走的路程是()A. B. C. D.不確定4.以下四個圖形標(biāo)志中,其中是中心對稱圖形的是()A. B. C. D.5.九(1)班的教室里正在召開50人的座談會,其中有3名教師,12名家長,35名學(xué)生,當(dāng)林校長走到教室門口時,聽到里面有人在發(fā)言,那么發(fā)言人是家長的概率為()A. B. C. D.6.下列命題中正確的是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相垂直平分且相等的四邊形是正方形D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形7.下列函數(shù)是二次函數(shù)的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.8.下列四個圖形是中心對稱圖形().A. B. C. D.9.若x=2是關(guān)于x的一元二次方程x2﹣ax=0的一個根,則a的值為()A.1 B.﹣1 C.2 D.﹣210.如圖,點A是以BC為直徑的半圓的中點,連接AB,點D是直徑BC上一點,連接AD,分別過點B、點C向AD作垂線,垂足為E和F,其中,EF=2,CF=6,BE=8,則AB的長是()A.4 B.6 C.8 D.10二、填空題(每小題3分,共24分)11.“永定樓”,作為門頭溝區(qū)的地標(biāo)性建筑,因其坐落在永定河畔而得名.為測得其高度,低空無人機在A處,測得樓頂端B的仰角為30°,樓底端C的俯角為45°,此時低空無人機到地面的垂直距離AE為23米,那么永定樓的高度BC是______米(結(jié)果保留根號).12.如圖,圓是一個油罐的截面圖,已知圓的直徑為5,油的最大深度(),則油面寬度為__________.13.拋物線與軸交點坐標(biāo)為______.14.已知是方程的一個根,則代數(shù)式的值為__________.15.已知圓錐的底面圓的半徑是,母線長是,則圓錐的側(cè)面積是________.16.如圖,是的直徑,弦則陰影部分圖形的面積為_________.17.反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.18.如圖,在邊長為的等邊三角形ABC中,以點A為圓心的圓與邊BC相切,與邊AB、AC相交于點D、E,則圖中陰影部分的面積為_______.三、解答題(共66分)19.(10分)解方程:(1)2x2-4x-31=1;(2)x2-2x-4=1.20.(6分)(1)問題提出:蘇科版《數(shù)學(xué)》九年級(上冊)習(xí)題2.1有這樣一道練習(xí)題:如圖①,BD、CE是△ABC的高,M是BC的中點,點B、C、D、E是否在以點M為圓心的同一個圓上?為什么?在解決此題時,若想要說明“點B、C、D、E在以點M為圓心的同一個圓上”,在連接MD、ME的基礎(chǔ)上,只需證明.(2)初步思考:如圖②,BD、CE是銳角△ABC的高,連接DE.求證:∠ADE=∠ABC,小敏在解答此題時,利用了“圓的內(nèi)接四邊形的對角互補”進(jìn)行證明.(請你根據(jù)小敏的思路完成證明過程.)(3)推廣運用:如圖③,BD、CE、AF是銳角△ABC的高,三條高的交點G叫做△ABC的垂心,連接DE、EF、FD,求證:點G是△DEF的內(nèi)心.21.(6分)如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).(1)求證:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周長.22.(8分)方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,且三個頂點的坐標(biāo)分別為A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出點C1的坐標(biāo);(1)作出△ABC繞著點A逆時針方向旋轉(zhuǎn)90°后得到的△AB1C1.23.(8分)如圖所示,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.(1)求OE的長.(2)求經(jīng)過O,D,C三點的拋物線的解析式.(3)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當(dāng)點P到達(dá)點B時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,DP=DQ.(4)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,直接寫出M點的坐標(biāo);若不存在,請說明理由.24.(8分)如圖,為了測得旗桿AB的高度,小明在D處用高為1m的測角儀CD,測得旗桿頂點A的仰角為45°,再向旗桿方向前進(jìn)10m,又測得旗桿頂點A的仰角為60°,求旗桿AB的高度.25.(10分)如圖,AB和DE是直立在地面上的兩根立柱.AB=6m,某一時刻AB在陽光下的投影BC=4m(1)請你在圖中畫出此時DE在陽光下的投影.(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為9m,請你計算DE的長.26.(10分)一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:x3000320035004000y100969080(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.(2)已知租出的車每輛每月需要維護(hù)費150元,未租出的車每輛每月需要維護(hù)費50元.用含x(x≥3000)的代數(shù)式填表:租出的車輛數(shù)未租出的車輛數(shù)租出每輛車的月收益所有未租出的車輛每月的維護(hù)費(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由條件DE∥BC,可得△ADE∽△ABC,又由DE將△ABC分成面積相等的兩部分,可得S△ADE:S△ABC=1:1,根據(jù)相似三角形面積之比等于相似比的平方,可得答案.【詳解】如圖所示:∵DE∥BC,∴△ADE∽△ABC.設(shè)DE:BC=1:x,則由相似三角形的性質(zhì)可得:S△ADE:S△ABC=1:x1.又∵DE將△ABC分成面積相等的兩部分,∴x1=1,∴x,即.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解答本題的關(guān)鍵.2、B【分析】將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標(biāo)的積為負(fù)數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標(biāo)的積為負(fù)數(shù),∴解不等式組,得t>.故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關(guān)鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.3、C【分析】根據(jù)題意作△ACP的外接圓,根據(jù)網(wǎng)格的特點確定圓心與半徑,求出其周長即可求解.【詳解】如圖,△ACP的外接圓是以點O為圓心,OA為半徑的圓,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O點是AC的中點,∴AO=CO=OP=∴這個人所走的路程是故選C.【點睛】此題主要考查三角形的外接圓,解題的關(guān)鍵是熟知外接圓的作法與網(wǎng)格的特點.4、C【分析】根據(jù)中心對稱圖形的概念對各選項逐一分析判斷即可得答案.【詳解】A、不是中心對稱圖形,故本選項不合題意,B、不是中心對稱圖形,故本選項不合題意,C、是中心對稱圖形,故本選項符合題意,D、不是中心對稱圖形,故本選項不合題意.故選C.【點睛】本題考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、B【解析】根據(jù)概率=頻數(shù)除以總數(shù)即可解題.【詳解】解:由題可知:發(fā)言人是家長的概率==,故選B.【點睛】本題考查了概率的實際應(yīng)用,屬于簡單題,熟悉概率的計算方法是解題關(guān)鍵.6、C【解析】試題分析:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線互相垂直的平行四邊形是菱形,所以B選項錯誤;C、對角線互相垂直平分且相等的四邊形是正方形,所以C選項正確;D、一組對邊相等且平行的四邊形是平行四邊形,所以D選項錯誤.故選C.考點:命題與定理.7、C【分析】根據(jù)二次函數(shù)的定義作出判斷.【詳解】解:A、該函數(shù)屬于一次函數(shù),故本選項錯誤;B、該函數(shù)未知數(shù)在分母位置,不符合二次函數(shù)的定義,故本選項錯誤;C、該函數(shù)符合二次函數(shù)的定義,故本選項正確;D、該函數(shù)只有一個變量不符合二次函數(shù)的定義,故本選項錯誤;故選:C.【點睛】此題考查的是二次函數(shù)的判斷,掌握二次函數(shù)的定義是解決此題的關(guān)鍵.8、C【分析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、C【分析】將x=2代入原方程即可求出a的值.【詳解】將x=2代入x2﹣ax=0,∴4﹣2a=0,∴a=2,故選:C.【點睛】本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的解法,本題屬于基礎(chǔ)題型.10、D【分析】延長BE交于點M,連接CM,AC,依據(jù)直徑所對的圓周角是90度,及等弧對等弦,得到直角三角形BMC和等腰直角三角形BAC,依據(jù)等腰直角三角形三邊關(guān)系,知道要求AB只要求直徑BC,直徑BC可以在直角三角形BMC中運用勾股定理求,只需要求出BM和CM,依據(jù)三個內(nèi)角是直角的四邊形是矩形,可以得到四邊形EFCM是矩形,從而得到CM和EM的長度,再用BE+EM即得BM,此題得解.【詳解】解:延長BE交于點M,連接CM,AC,∵BC為直徑,∴,又∵由得:,∴四邊形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵點A是以BC為直徑的半圓的中點,∴AB=AC,又∵,∴,∴AB=10.故選:D.【點睛】本題考查了圓周角定理的推理——直徑所對的圓周角是90度,矩形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是構(gòu)造兩個直角三角形,將已知和待求用勾股定理建立等式.二、填空題(每小題3分,共24分)11、【分析】過點A作BC的垂線,垂足為D,則∠DAC=45°,∠BAD=30°,進(jìn)一步推出AD=CD=AE=米,再根據(jù)tan∠BAD==,從而求出BD的值,再由BC=BD+CD即可得到結(jié)果.【詳解】解:如圖所示,過點A作AD⊥BC于D,則∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案為.【點睛】本題主要考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是從題目中整理出直角三角形并正確的利用邊角關(guān)系求解.12、1【分析】連接OA,先求出OA和OD,再根據(jù)勾股定理和垂徑定理即可求出AD和AB.【詳解】解:連接OA∵圓的直徑為5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根據(jù)勾股定理可得:AD=∴AB=2AD=1m故答案為:1.【點睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.13、【分析】令x=0,求出y的值即可.【詳解】解:∵當(dāng)x=0,則y=-1+3=2,∴拋物線與y軸的交點坐標(biāo)為(0,2).【點睛】本題考查的是二次函數(shù)的性質(zhì),熟知y軸上點的特點,即y軸上的點的橫坐標(biāo)為0是解答此題的關(guān)鍵.14、【分析】根據(jù)方程的根的定義,得,結(jié)合完全平方公式,即可求解.【詳解】∵是方程的一個根,∴,即:∴=1+1=1.故答案是:1.【點睛】本題主要考查方程的根的定義以及完全平方公式,,掌握完全平方公式,是解題的關(guān)鍵.15、【解析】先計算出圓錐的底面圓的周長=1π×8cm=16πcm,而圓錐的側(cè)面展開圖為扇形,然后根據(jù)扇形的面積公式進(jìn)行計算.【詳解】∵圓錐的底面圓的半徑是8cm,
∴圓錐的底面圓的周長=1π×8cm=16πcm,
∴圓錐的側(cè)面積=×10cm×16πcm=80πcm1.
故答案是:80π.【點睛】考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了扇形的面積公式.16、【分析】根據(jù)垂徑定理求得CE=ED=;然后由圓周角定理知∠COE=60°.然后通過解直角三角形求得線段OC,求出扇形COB面積,即可得出答案.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴陰影部分的面積S=S扇形COB=,
故答案為:.【點睛】本題考查了垂徑定理、解直角三角形,圓周角定理,扇形面積的計算等知識點,能知道陰影部分的面積=扇形COB的面積是解此題的關(guān)鍵.17、沒有實數(shù)根【解析】分析:由比例函數(shù)y=的圖象位于一、三象限得出a+4>0,A、P為該圖象上的點,且關(guān)于原點成中心對稱,得出1xy>11,進(jìn)一步得出a+4>6,由此確定a的取值范圍,進(jìn)一步利用根的判別式判定方程根的情況即可.詳解:∵反比例函數(shù)y=的圖象位于一、三象限,∴a+4>0,∴a>-4,∵A、P關(guān)于原點成中心對稱,PB∥y軸,AB∥x軸,△PAB的面積大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴關(guān)于x的方程(a-1)x1-x+=0沒有實數(shù)根.故答案為:沒有實數(shù)根.點睛:此題綜合考查了反比例函數(shù)的圖形與性質(zhì),一元二次方程根的判別式,注意正確判定a的取值范圍是解決問題的關(guān)鍵.18、【分析】首先求得圓的半徑,根據(jù)陰影部分的面積=△ABC的面積?扇形ADE的面積即可求解.【詳解】解:設(shè)以點A為圓心的圓與邊BC相切于點F,連接AF,如圖所示:
則AF⊥BC,
∵△ABC是等邊三角形,
∴∠B=60°,BC=AB=,
∴AF=AB?sin60°=×=3,
∴陰影部分的面積=△ABC的面積?扇形ADE的面積=××3?=.
故答案為:.【點睛】本題主要考查了扇形的面積的計算、三角函數(shù)、切線的性質(zhì)、等邊三角形的性質(zhì);熟練掌握切線的性質(zhì),由三角函數(shù)求出AF是解決問題的關(guān)鍵.三、解答題(共66分)19、(1)x1=-3,x2=5;(2)x1=,x2=【分析】(1)利用等式的性質(zhì)將方程化簡,再利用因式分解法解得即可;(2)利用公式法求解即可.【詳解】解:(1)方程變形為:x2-2x-15=1,即(x+3)(x-5)=1,解得:x1=-3,x2=5;(2)由方程可得:a=1,b=-2,c=-4,∴==,∴x1=,x2=.【點睛】本題考查了一元二次方程的解法.解題的關(guān)鍵是選擇適當(dāng)?shù)慕忸}方法,注意解題需細(xì)心.20、(1)ME=MD=MB=MC;(2)證明見解析;(3)證明見解析.【分析】(1)要證四個點在同一圓上,即證明四個點到定點距離相等.(2)由“直角三角形斜邊上的中線等于斜邊的一半”,即能證ME=MD=MB=MC,得到四邊形BCDE為圓內(nèi)接四邊形,故有對角互補.(3)根據(jù)內(nèi)心定義,需證明DG、EG、FG分別平分∠EDF、∠DEF、∠DFE.由點B、C、D、E四點共圓,可得同弧所對的圓周角∠CBD=∠CED.又因為∠BEG=∠BFG=90°,根據(jù)(2)易證點B、F、G、E也四點共圓,有同弧所對的圓周角∠FBG=∠FEG,等量代換有∠CED=∠FEG,同理可證其余兩個內(nèi)角的平分線.【詳解】解:(1)根據(jù)圓的定義可知,當(dāng)點B、C、D、E到點M距離相等時,即他們在圓M上故答案為:ME=MD=MB=MC(2)證明:連接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M(jìn)為BC的中點∴ME=MD=BC=MB=MC∴點B、C、D、E在以點M為圓心的同一個圓上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)證明:取BG中點N,連接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=BG=BN=NG∴點B、F、G、E在以點N為圓心的同一個圓上∴∠FBG=∠FEG∵由(2)證得點B、C、D、E在同一個圓上∴∠FBG=∠CED∴∠FEG=∠CED同理可證:∠EFG=∠AFD,∠EDG=∠FDG∴點G是△DEF的內(nèi)心【點睛】本題考查了直角三角形斜邊中線定理、中點的性質(zhì)、三角形內(nèi)心的判定、圓周角定理、角平分線的定義,綜合性較強,解決本題的關(guān)鍵是熟練掌握三角形斜邊中線定理、圓周角定理,能夠根據(jù)題意熟練掌握各個角之間的內(nèi)在聯(lián)系.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用D是BC的中點,求證△BED≌△CFD即可得出結(jié)論.(2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可算出△ABC的周長.試題解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等邊對等角).∵D是BC的中點,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)∵AB=AC,∠A=60°,∴△ABC為等邊三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周長為1.考點:全等三角形的判定與性質(zhì).22、(1)圖詳見解析,C1(4,1);(1)圖詳見解析【分析】(1)根據(jù)關(guān)于原點對稱點的坐標(biāo),確定對稱點的坐標(biāo),描點連線成圖即可;(1)根據(jù)旋轉(zhuǎn)的性質(zhì)確定B1,C1的位置再連接,B1,C1.【詳解】解:(1)如圖,△A1B1C1為所求,C1(4,1)(1)如圖,△AB1C1為所求,【點睛】此題考查旋轉(zhuǎn)—作圖,點的對稱,掌握旋轉(zhuǎn)圖形的性質(zhì)是解題的關(guān)鍵.23、(1)3;(2);(3)t=;(1)存在,M點的坐標(biāo)為(2,16)或(-6,16)或【分析】(1)由矩形的性質(zhì)以及折疊的性質(zhì)可求得CE、CO的長,在Rt△COE中,由勾股定理可求得OE的長;
(2)設(shè)AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,從而得出D點坐標(biāo),結(jié)合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;
(3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),設(shè)N(-2,n),M(m,y),分以下三種情況:①以EN為對角線,根據(jù)對角線互相平分,可得CM的中點與EN的中點重合,根據(jù)中點坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;②當(dāng)EM為對角線,根據(jù)對角線互相平分,可得CN的中點與EM的中點重合,根據(jù)中點坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;③當(dāng)CE為對角線,根據(jù)對角線互相平分,可得CE的中點與MN的中點重合,根據(jù)中點坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.【詳解】解:(1)∵OABC為矩形,∴BC=AO=5,CO=AB=1.又由折疊可知,,;(2)設(shè)AD=m,則DE=BD=1-m,
∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵該拋物線經(jīng)過C(-1,0)、O(0,0),∴設(shè)該拋物線解析式為,把點D代入上式得,∴a=,∴;(3)如圖所示,連接DP、DQ.由題意可得,CP=2t,EQ=t,則BP=5-2t.當(dāng)DP=DQ時,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故當(dāng)t=時,DP=DQ;(1)∵拋物線的對稱軸為直線x==-2,
∴設(shè)N(-2,n),
又由(2)可知C(-1,0),E(0,-3),設(shè)M(m,y),
①當(dāng)EN為對角線,即四邊形ECNM是平行四邊形時,如圖1,
則線段EN的中點橫坐標(biāo)為=-1,線段CM的中點橫坐標(biāo)為,
∵EN,CM互相平分,
∴=-1,解得m=2,
又M點在拋物線上,
∴y=×22+×2=16,
∴M(2,16);
②當(dāng)EM為對角線,即四邊形ECMN是平行四邊形時,如圖2,
則線段EM的中點橫坐標(biāo)為,線段CN中點橫坐標(biāo)為,∵EM,CN互相平分,
∴m=-3,解得m=-6,
又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海洋污水治理工程管理方案
- 零售業(yè)技術(shù)創(chuàng)新管理制度
- 大型活動場館物業(yè)管理服務(wù)方案
- 寧波2024年05版小學(xué)四年級上冊英語第6單元期中試卷
- 醫(yī)院突發(fā)醫(yī)療事件應(yīng)急預(yù)案
- 鋼結(jié)構(gòu)廠房施工后評估方案
- 2024-2025學(xué)年黑龍江省大慶市實驗中學(xué)高三上學(xué)期10月考地理試題及答案
- 城市高空作業(yè)施工方案
- 小學(xué)階段雙減措施實施評價方案
- 基于PLC技術(shù)的電氣實驗設(shè)備連接線智能控制技術(shù)
- 辦理營業(yè)執(zhí)照委托書
- 危險貨物道路運輸安全卡4
- 船舶電氣安裝理論圖紙相結(jié)合PPT課件
- 道路交通標(biāo)志與標(biāo)線PPT課件
- 幕墻打膠工藝
- 違約損失率(LGD)研究
- 新冀教版九年級英語上冊第26課課件
- 編寫標(biāo)準(zhǔn)必備文件 國家標(biāo)準(zhǔn) 地方標(biāo)準(zhǔn) 行業(yè)標(biāo)準(zhǔn) 企業(yè)標(biāo)準(zhǔn) 格式模板大全
- 《鉆木取火》PPT
- 2021-2025鄉(xiāng)村5年規(guī)劃三篇
- 無線電遙控帆船講解
評論
0/150
提交評論