版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣東省佛山市順德區(qū)龍江鎮(zhèn)九上數(shù)學(xué)期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在矩形ABCD中,對角線AC,BD交與點O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有()A.2條 B.4條C.5條 D.6條2.已知關(guān)于x的方程x2+bx+a=0有一個根是﹣a(a≠0),則a﹣b的值為()A.a(chǎn)﹣b=1 B.a(chǎn)﹣b=﹣1 C.a(chǎn)﹣b=0 D.a(chǎn)﹣b=±13.如圖,將的三邊擴大一倍得到(頂點均在格點上),如果它們是以點為位似中心的位似圖形,則點的坐標(biāo)是()A. B. C. D.4.二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;;,其中正確結(jié)論的是A. B. C. D.5.一元二次方程的一個根為,則的值為()A.1 B.2 C.3 D.46.如圖,函數(shù)與函數(shù)在同一坐標(biāo)系中的圖象如圖所示,則當(dāng)時().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x17.如圖,點是的邊上的一點,若添加一個條件,使與相似,則下列所添加的條件錯誤的是()A. B. C. D.8.已知正多邊形的邊心距與邊長的比為,則此正多邊形為()A.正三角形 B.正方形 C.正六邊形 D.正十二邊形9.下列事件中,是必然事件的是()A.打開電視,它正在播廣告B.拋擲一枚硬幣,正面朝上C.打雷后會下雨D.367人中有至少兩人的生日相同10.把中考體檢調(diào)查學(xué)生的身高作為樣本,樣本數(shù)據(jù)落在1.6~2.0(單位:米)之間的頻率為0.28,于是可估計2000名體檢中學(xué)生中,身高在1.6~2.0米之間的學(xué)生有()A.56 B.560 C.80 D.15011.一個盒子里裝有若干個紅球和白球,每個球除顏色以外都相同.5位同學(xué)進行摸球游戲,每位同學(xué)摸10次(摸出1球后放回,搖勻后再繼續(xù)摸),其中摸到紅球數(shù)依次為8,5,9,7,6,則估計盒中紅球和白球的個數(shù)是()A.紅球比白球多 B.白球比紅球多 C.紅球,白球一樣多 D.無法估計12.已知、是一元二次方程的兩個實數(shù)根,則的值為()A.-1 B.0 C.1 D.2二、填空題(每題4分,共24分)13.如圖,在中,,是邊上一點,過點作,垂足為,,,,求的長.14.如圖,矩形ABCD繞點A旋轉(zhuǎn)90°,得矩形,若三點在同一直線上,則的值為_______________15.一元二次方程x2﹣x=0的根是_____.16.從一副沒有“大小王”的撲克牌中隨機抽取一張,點數(shù)為“”的概率是________.17.如圖所示,點為平分線上一點,以點為頂點的兩邊分別與射線,相交于點,,如果在繞點旋轉(zhuǎn)時始終滿足,我們就把叫做的關(guān)聯(lián)角.如果,是的關(guān)聯(lián)角,那么的度數(shù)為______.18.已知正方形的一條對角線長,則該正方形的周長是___________.三、解答題(共78分)19.(8分)如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.(3)求點在函數(shù)圖象上的概率.20.(8分)如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.(1)求證:EB=DC;(2)連接DE,若∠BED=50°,求∠ADC的度數(shù).21.(8分)一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.(1)求拋物線的解析式;(2)點為第一象限拋物線上一動點.設(shè)點的橫坐標(biāo)為,的面積為.當(dāng)為何值時,的值最大,并求的最大值;(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標(biāo).22.(10分)先化簡,再求值,,其中m滿足:m2﹣4=1.23.(10分)如圖,在△ABC中,D為BC邊上的一點,且∠CAD=∠B,CD=4,BD=2,求AC的長24.(10分)如圖,對稱軸是的拋物線與軸交于兩點,與軸交于點,求拋物線的函數(shù)表達式;若點是直線下方的拋物線上的動點,求的面積的最大值;若點在拋物線對稱軸左側(cè)的拋物線上運動,過點作鈾于點,交直線于點,且,求點的坐標(biāo);在對稱軸上是否存在一點,使的周長最小,若存在,請求出點的坐標(biāo)和周長的最小值;若不存在,請說明理由.25.(12分)如圖,直線和反比例函數(shù)的圖象都經(jīng)過點,點在反比例函數(shù)的圖象上,連接.(1)求直線和反比例函數(shù)的解析式;(2)直線經(jīng)過點嗎?請說明理由;(3)當(dāng)直線與反比例數(shù)圖象的交點在兩點之間.且將分成的兩個三角形面積之比為時,請直接寫出的值.26.某經(jīng)銷商銷售一種成本價為10元/kg的商品,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不得高于18元/kg.在銷售過程中發(fā)現(xiàn)銷量y(kg)與售價x(元/kg)之間滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表所示:⑴求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤,求售價應(yīng)定為多少元/kg?⑶設(shè)銷售這種商品每天所獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;并求出該商品銷售單價定為多少元時,才能使經(jīng)銷商所獲利潤最大?最大利潤是多少?
參考答案一、選擇題(每題4分,共48分)1、D【詳解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6條線段為1.故選D.2、B【分析】把x=﹣a代入方程得到一個二元二次方程,方程的兩邊都除以a,即可得出答案.【詳解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴兩邊都除以a得:a﹣b+1=0,即a﹣b=﹣1,故選:B.【點睛】此題考查一元二次方程的解,是方程的解即可代入方程求其他未知數(shù)的值或是代數(shù)式的值.3、D【分析】根據(jù)位似中心的定義作圖即可求解.【詳解】如圖,P點即為位似中心,則P故選D.【點睛】此題主要考查位似中心,解題的關(guān)鍵是熟知位似的特點.4、C【分析】利用圖象信息以及二次函數(shù)的性質(zhì)一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故②錯誤,∵x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時,y>0,x=1時,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯誤,∵x=﹣1時,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.5、B【分析】將x=2代入方程即可求得k的值,從而得到正確選項.【詳解】解:∵一元二次方程x2-3x+k=0的一個根為x=2,
∴22-3×2+k=0,
解得,k=2,
故選:B.【點睛】本題考查一元二次方程的解,解題的關(guān)鍵是明確一元二次方程的解一定使得原方程成立.6、B【分析】根據(jù)題目中的函數(shù)解析式和圖象可以得到當(dāng)時的x的取值范圍,從而可以解答本題.【詳解】根據(jù)圖象可知,當(dāng)函數(shù)圖象在函數(shù)圖象上方即為,∴當(dāng)時,1x0或x1.故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于利用函數(shù)圖象解決問題.7、D【分析】在與中,已知有一對公共角∠B,只需再添加一組對應(yīng)角相等,或夾已知等角的兩組對應(yīng)邊成比例,即可判斷正誤.【詳解】A.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;B.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;C.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;D.若,但夾的角不是公共等角∠B,則不能證明兩三角形相似,錯誤,符合題意,故選:D.【點睛】本題考查相似三角形的判定,熟練掌握相似三角形的判定條件是解答的關(guān)鍵.8、B【分析】邊心距與邊長的比為,即邊心距等于邊長的一半,進而可知半徑與邊心距的夾角是15度.可求出中心角的度數(shù),從而得到正多邊形的邊數(shù).【詳解】如圖,圓A是正多邊形的內(nèi)切圓;∠ACD=∠ABD=90°,AC=AB,CD=BD是邊長的一半,當(dāng)正多邊形的邊心距與邊長的比為,即如圖有AB=BD,則△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多邊形的中心角是90度,所以它的邊數(shù)=360÷90=1.故選:B.【點睛】本題利用了正多邊形與它的內(nèi)切圓的關(guān)系求解,轉(zhuǎn)化為解直角三角形的計算.9、D【解析】分析:必然事件指在一定條件下一定發(fā)生的事件,據(jù)此解答即可.詳解:A.打開電視,它正在播廣告是隨機事件;B.拋擲一枚硬幣,正面朝上是隨機事件;C.打雷后下雨是隨機事件;D.∵一年有365天,∴367人中有至少兩個人的生日相同是必然事件.故選D.點睛:本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、B【分析】由題意根據(jù)頻率的意義,每組的頻率=該組的頻數(shù):樣本容量,即頻數(shù)=頻率×樣本容量.?dāng)?shù)據(jù)落在1.6~2.0(單位:米)之間的頻率為0.28,于是2000名體檢中學(xué)生中,身高在1.6~2.0米之間的學(xué)生數(shù)即可求解.【詳解】解:0.28×2000=1.故選:B.【點睛】本題考查頻率的意義與計算以及頻率的意義,注意掌握每組的頻率=該組的頻數(shù)樣本容量.11、A【解析】根據(jù)題意可得5位同學(xué)摸到紅球的頻率為,由此可得盒子里的紅球比白球多.故選A.12、C【分析】根據(jù)根與系數(shù)的關(guān)系即可求出的值.【詳解】解:∵、是一元二次方程的兩個實數(shù)根∴故選C.【點睛】此題考查的是根與系數(shù)的關(guān)系,掌握一元二次方程的兩根之和=是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、.【分析】在中,根據(jù)求得CE,在中,根據(jù)求得BC,最后將CE,BC的值代入即可.【詳解】解:在中,,.在中,,.的長為.【點睛】本題考查了解直角三角形,熟練掌握三角函數(shù)定義是解題的關(guān)鍵.14、【分析】連接,根據(jù)旋轉(zhuǎn)的性質(zhì)得到,根據(jù)相似三角形的性質(zhì)得,即,即可得到結(jié)論.【詳解】解:連接,∵矩形ABCD繞點A旋轉(zhuǎn)90°,得矩形,
∴=BC=AD,,,
∵三點在同一直線上,∴∴.即.解得或(舍去)所以.故答案為:【點睛】本題考查旋轉(zhuǎn)的性質(zhì),相似三角形的判定和性質(zhì),矩形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.15、x1=0,x2=1【分析】方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案為x1=0,x2=1.【點睛】此題考查了解一元二次方程﹣因式分解法,熟練掌握方程的解法是解本題的關(guān)鍵.16、【分析】讓點數(shù)為6的撲克牌的張數(shù)除以沒有大小王的撲克牌總張數(shù)即為所求的概率.【詳解】∵沒有大小王的撲克牌共52張,其中點數(shù)為6的撲克牌4張,
∴隨機抽取一張點數(shù)為6的撲克,其概率是
故答案為【點睛】本題考查的是隨機事件概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、【分析】由已知條件得到,結(jié)合∠AOP=∠BOP,可判定△AOP∽△POB,再根據(jù)相似三角形的性質(zhì)得到∠OPA=∠OBP,利用三角形內(nèi)角和180°與等量代換即可求出∠APB的度數(shù).【詳解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案為:155°.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定定理是解題的關(guān)鍵.18、【分析】對角線與兩邊正好構(gòu)成等腰直角三角形,據(jù)此即可求得邊長,即可求得周長.【詳解】令正方形ABCD,對角線交于點O,如圖所示;∵AC=BD=4,AC⊥BD∴AO=CO=BO=DO=2∴AB=BC=CD=AD=∴正方形的周長為故答案為.【點睛】此題主要考查正方形的性質(zhì),熟練掌握,即可解題.三、解答題(共78分)19、(1);(2)見解析,共9種,;(3)【分析】(1)轉(zhuǎn)動一次有三種可能,出現(xiàn)數(shù)字2只有一種情況,據(jù)此可得出結(jié)果;
(2)根據(jù)題意列表或畫樹狀圖即可得出所有可能的結(jié)果;(3)可以得出只有(1,2)、(2,3)在函數(shù)的圖象上,即可求概率.【詳解】解:(1)根據(jù)題意可得,指針指向的數(shù)字2的概率為;(2)列表,得:或畫樹狀圖,得:由列表或樹狀圖可得可能的情況共有9種,分別為:;(3)解:由題意以及(2)可知:滿足的有:,∴點在函數(shù)y=x+1圖象上的概率為.【點睛】本題考查一次函數(shù)的圖象上的點,等可能事件的概率;能夠列出表格或樹狀圖是解題的關(guān)鍵.20、(1)證明見解析;(2)110°【分析】(1)根據(jù)等邊三角形的性質(zhì)可得∠BAC=60°,AB=AC,由旋轉(zhuǎn)的性質(zhì)可得∠DAE=60°,AE=AD,利用SAS即可證出≌,從而證出結(jié)論;(2)根據(jù)等邊三角形的判定定理可得為等邊三角形,從而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出結(jié)論.【詳解】解:(1)∵是等邊三角形,∴∠BAC=60°,AB=AC.∵線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如圖,由(1)得∠DAE=60°,AE=AD,∴為等邊三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【點睛】此題考查的是等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì),掌握等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì)是解決此題的關(guān)鍵.21、(1);(2)當(dāng)時,的值最大,最大值為;(3)、、或【分析】(1)設(shè)拋物線的解析式為,代入點的坐標(biāo)即可求解;(2)連接,可得點,根據(jù)一次函數(shù)得出點、的坐標(biāo),然后利用三角形面積公式得出的表達式,利用二次函數(shù)的表達式即可求解;(3)①當(dāng)為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,得出,再利用等腰直角三角形和坐標(biāo)即可求解;②當(dāng)為斜邊時,設(shè)的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,先得出和的值,再求出的值即可求解.【詳解】解:(1)一次函數(shù)與軸交于點,則的坐標(biāo)為.拋物線的頂點為,設(shè)拋物線解析式為.拋物線經(jīng)過點,..拋物線解析式為;(2)解法一:連接.點為第一象限拋物線上一動點.點的橫坐標(biāo)為,.一次函數(shù)與軸交于點.則,的坐標(biāo)為,.,,..當(dāng)時,的值最大,最大值為;解法二:作軸,交于點.的坐標(biāo)為,.點為第一象限拋物線上一動點.點的橫坐標(biāo)為,,...當(dāng)時,的值最大,最大值為;解法三:作軸,交于點.一次函數(shù)與軸交于點.則,點為第一象限拋物線上一動點.點的橫坐標(biāo)為,.把代入,解得,..當(dāng)時,的值最大,最大值為;解法四:構(gòu)造矩形.(或構(gòu)造梯形)一次函數(shù)與軸交于點.則,的坐標(biāo)為,.點為第一象限拋物線上一動點.點的橫坐標(biāo)為,設(shè)點的縱坐標(biāo)為,,,,,,,..當(dāng)時,的值最大,最大值為;(3)由(2)易得點的坐標(biāo)為,①當(dāng)為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,如下圖所示:由點和點的坐標(biāo)可知:∴∴∴點的坐標(biāo)為由題可知:∴∴點的坐標(biāo)為;②當(dāng)為斜邊時,設(shè)的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,如下圖所示:由點和點的坐標(biāo)可得點的坐標(biāo)是∴,∴∴點的坐標(biāo)為,點的坐標(biāo)為根據(jù)圓周角定理即可知道∴點和點符合要求∴綜上所述點的坐標(biāo)為、、或.【點睛】本題主要考察了待定系數(shù)法求拋物線解析式、一次函數(shù)、動點問題等,利用數(shù)形結(jié)合思想是關(guān)鍵.22、,﹣【分析】先根據(jù)分式的混合運算順序和運算法則化簡原式,再求出符合條件的m的值,從而代入計算可得.【詳解】解:原式=÷==,∵m2﹣4=1且m≠2,∴m=﹣2,則原式==﹣.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.23、【分析】根據(jù)相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【詳解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握有兩組對應(yīng)角相等的兩個三角形相似和相似三角形的對應(yīng)邊成比例是解決此題的關(guān)鍵.24、(1)y=x2+x﹣2;(2)△PBC面積的最大值為2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,點M(﹣1,﹣),△AMC周長的最小值為.【分析】(1)先由拋物線的對稱性確定點B坐標(biāo),再利用待定系數(shù)法求解即可;(2)先利用待定系數(shù)法求得直線BC的解析式,然后設(shè)出點P的橫坐標(biāo)為t,則可用含t的代數(shù)式表示出PE的長,根據(jù)面積的和差可得關(guān)于t的二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)可得答案;(3)先設(shè)D(m,0),然后用m的代數(shù)式表示出E點和P點坐標(biāo),由條件可得關(guān)于m的方程,解出m的值即可得解;(4)要使周長最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于點B是點A關(guān)于拋物線對稱軸的對稱點,則點M就是BC與拋物線對稱軸的交點,由于點M的橫坐標(biāo)已知,則其縱坐標(biāo)易得,再根據(jù)勾股定理求出AC+BC,即為周長的最小值.【詳解】解:(1)∵對稱軸為x=﹣1的拋物線與x軸交于A(2,0),B兩點,∴B(﹣4,0).設(shè)拋物線解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以該拋物線解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)設(shè)直線BC的解析式為:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直線BC的解析式為:y=﹣x﹣2,作PQ∥y軸交BC于Q,如圖1,設(shè)P(t,t2+t﹣2),則Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=?PQ?4=﹣t2﹣2t=﹣(t+2)2+2,∴當(dāng)t=﹣2時,△PBC面積有最大值,最大值為2;(3)設(shè)D(m,0),∵DP∥y軸,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵點A、B關(guān)于拋物線的對稱軸對稱,∴當(dāng)點M為直線BC與對稱軸的交點時,MA+MC的值最小,如圖2,此時△AMC的周長最小.∵直線BC的解析式為y=﹣x﹣2,拋物線的對稱軸為直線x=﹣1,∴當(dāng)x=﹣1時,y=﹣.∴拋物線對稱軸上存在點M(﹣1,﹣)符合題意,此時△AMC周長的最小值為AC+BC=.【點睛】此題是二次函數(shù)綜合題,主要考查了利用待定系數(shù)法確定函數(shù)解析式、二次函數(shù)的性質(zhì)、一元二次方程的解法、二次函數(shù)圖象上的坐標(biāo)特征和兩線段之和最小等知識,屬于??碱}型,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和函數(shù)圖象上點的坐標(biāo)特征.25、(1);(2)直線經(jīng)過點,理由見解析;(1)的值為或.【分析】(1)依據(jù)直線l1:y=-2x+b和反比例數(shù)的圖象都經(jīng)過點P(2,1),可得b=5,m=2,進而得出直線l1和反比例函數(shù)的表達式;
(2)先根據(jù)反比例函數(shù)解析式求得點Q的坐標(biāo)為,依據(jù)當(dāng)時,y=-2×+5=4,可得直線l1經(jīng)過點Q;
(1)根據(jù)OM將分成的兩個三角形面積之比為,分以下兩種情況:①△OMQ的面積:△OMP的面積=1:2,此時有QM:PM=1:2;②OMQ的面積:△OMP的面積=2:1,此時有QM:PM=2:1,再過M,Q分別作x軸,y軸的垂線,設(shè)點M的坐標(biāo)為(a,b),根據(jù)平行線分線段成比例列方程求解得出點M的坐標(biāo),從而求出k的值.【詳解】解:(1)∵直線和反比例函數(shù)的圖象都經(jīng)過點,.∴直線l1的解析式為y=-2x+5,反比例函數(shù)大家解析式為;(2)直線經(jīng)過點,理由如下.點在反比例函數(shù)的圖象上,.點的坐標(biāo)為.當(dāng)時,.直線經(jīng)過點;(1)的值為或.理由如下:OM將分成的兩個三角形面積之比為,分以下兩種情況:①△OMQ的面積:△OMP的面積=1:2,此時有QM:PM=1:2,如圖,過點M作ME⊥x軸交PC于點E,MF⊥y軸于點F;過點Q作QA⊥x軸交PC于點A,作QB⊥y軸于點B,交FM于點G,設(shè)點M的坐標(biāo)為(a,b),圖①∵點P的坐標(biāo)為(2,1),點Q的坐標(biāo)為(,4),∴AE=a-,PE=2-a,∵ME∥BC,Q
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學(xué)院《畜牧機械》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東科技學(xué)院《譜學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門幼兒師范高等專科學(xué)?!恫厮幉脑耘鄬W(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東行政職業(yè)學(xué)院《人力資源綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工程職業(yè)技術(shù)學(xué)院《創(chuàng)意傳播管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東第二師范學(xué)院《Photoshop圖像處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 《高效績團隊》課件
- 廣安職業(yè)技術(shù)學(xué)院《房地產(chǎn)開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《翻譯概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 保潔消防培訓(xùn)課件
- UCC3895芯片內(nèi)部原理解析
- 混凝土設(shè)計的各種表格
- 保安員培訓(xùn)教學(xué)大綱
- 廣東省高等學(xué)?!扒О偈こ獭钡诹^續(xù)培養(yǎng)對象和第
- 【企業(yè)杜邦分析國內(nèi)外文獻綜述6000字】
- taft波完整版可編輯
- 2023-2024學(xué)年浙江省富陽市小學(xué)數(shù)學(xué)五年級上冊期末通關(guān)試題
- TTAF 092-2022 移動終端融合快速充電測試方法
- GB/T 5343.2-2007可轉(zhuǎn)位車刀及刀夾第2部分:可轉(zhuǎn)位車刀型式尺寸和技術(shù)條件
- GB/T 32285-2015熱軋H型鋼樁
- GB/T 13772.2-1992機織物中紗線抗滑移性測定方法模擬縫合法
評論
0/150
提交評論