廣東省廣州市荔灣區(qū)廣雅實驗學校2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第1頁
廣東省廣州市荔灣區(qū)廣雅實驗學校2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第2頁
廣東省廣州市荔灣區(qū)廣雅實驗學校2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第3頁
廣東省廣州市荔灣區(qū)廣雅實驗學校2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第4頁
廣東省廣州市荔灣區(qū)廣雅實驗學校2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2016年年收入300美元,預計2018年年收入將達到1500美元,設2016年到2018年該地區(qū)居民年人均收入平均增長率為x,可列方程為()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15002.等腰直角△ABC內(nèi)有一點P,滿足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.則CP的長等于()A. B.2 C.2 D.33.如圖,、、分別切于、、點,若圓的半徑為6,,則的周長為()A.10 B.12 C.16 D.204.如圖,△ABC內(nèi)接于⊙O,OD⊥AB于D,OE⊥AC于E,連結DE.且DE=,則弦BC的長為()A. B.2 C.3 D.5.如圖,正方形中,為的中點,的垂直平分線分別交,及的延長線于點,,,連接,,,連接并延長交于點,則下列結論中:①;②;③;④;⑤;⑥;⑦.正確的結論的個數(shù)為()A.3 B.4 C.5 D.66.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結論有()A.1個 B.2個 C.3個 D.4個7.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.88.在平面直角坐標系中,點E(﹣4,2),點F(﹣1,﹣1),以點O為位似中心,按比例1:2把△EFO縮小,則點E的對應點E的坐標為(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)9.如圖是二次函數(shù)圖像的一部分,直線是對稱軸,有以下判斷:①;②>0;③方程的兩根是2和-4;④若是拋物線上兩點,則>;其中正確的個數(shù)有()A.1 B.2 C.3 D.410.如圖,以原點O為圓心的圓交x軸于點A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)上的一點,若,則的度數(shù)是A.B.C.D.11.如圖,、、是小正方形的頂點,且每個小正方形的邊長為1,則的值為()A. B.1 C. D.12.已知,則()A.1 B.2 C.4 D.8二、填空題(每題4分,共24分)13.點A,B都在反比例函數(shù)圖象上,則_____.(填寫<,>,=號)14.如圖,將沿方向平移得到,與重疊部分(即圖中陰影部分)的面積是面積的,若,則平移的距離是__________.,15.如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是_____________cm.16.如圖,四邊形是的內(nèi)接四邊形,若,則的大小為________.17.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,則樹高AB=▲.18.一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中y與x之間的函數(shù)關系.已知兩車相遇時快車比慢車多行駛60千米.若快車從甲地到達乙地所需時間為t時,則此時慢車與甲地相距_____千米.三、解答題(共78分)19.(8分)如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線與直線交于,兩點.(1)求拋物線的解析式;(2)坐標軸上是否存在一點,使得是以為底邊的等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.(3)點在軸上且位于點的左側,若以,,為頂點的三角形與相似,求點的坐標.20.(8分)某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?21.(8分)如圖,菱形的頂點在菱形的邊上,與相交于點,,若,,求菱形的邊長.22.(10分)已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點O.(1)求證:OE=OF;(2)若點O為CD的中點,求證:四邊形DECF是矩形.23.(10分)已知:如圖,在半圓中,直徑的長為6,點是半圓上一點,過圓心作的垂線交線段的延長線于點,交弦于點.(1)求證:;(2)記,,求關于的函數(shù)表達式;(3)若,求圖中陰影部分的面積.24.(10分)解不等式組,將解集在數(shù)軸上表示出來,并求出此不等式組的所有整數(shù)解.25.(12分)某高級酒店為了吸引顧客,設立了一個可以自由轉動的轉盤,如圖所示,并規(guī)定:顧客消費100以上(不包括100元),就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針正好對準九折、八折、七折、五折區(qū)域顧客就可以獲得此項待遇(轉盤等分成16份).(1)甲顧客消費80元,是否可獲得轉動轉盤的機會?(2)乙顧客消費150元,獲得打折待遇的概率是多少?(3)他獲得九折,八折,七折,五折待遇的概率分別是多少?26.某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.

參考答案一、選擇題(每題4分,共48分)1、A【詳解】解:設2016年到2018年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2018年年收入為:300(1+x)2,列出方程為:300(1+x)2=1.故選A.2、B【分析】先利用定理求得,再證得,利用對應邊成比例,即可求得答案.【詳解】如圖,∵∠BAC=90°,AB=AC,∴,,設,則,如圖,∴,∴,∴,∴,∵,∴,∴,故選:B【點睛】本題考查了相似三角形的判定和性質,等腰直角三角形的性質,熟練運用相似三角形的判定和性質是本題的關鍵.3、C【分析】根據(jù)切線的性質,得到直角三角形OAP,根據(jù)勾股定理求得PA的長;根據(jù)切線長定理,得AD=CD,CE=BE,PA=PB,從而求解.【詳解】∵PA、PB、DE分別切⊙O于A、B、C點,

∴AD=CD,CE=BE,PA=PB,OA⊥AP.

在直角三角形OAP中,根據(jù)勾股定理,得AP==8,

∴△PDE的周長為2AP=1.

故選C.【點睛】此題綜合運用了切線長定理和勾股定理.4、C【分析】由垂徑定理可得AD=BD,AE=CE,由三角形中位線定理可求解.【詳解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故選:C.【點睛】本題考查了三角形的外接圓與外心,三角形的中位線定理,垂徑定理等知識,靈活運用這些性質進行推理是本題的關鍵.5、B【分析】①作輔助線,構建三角形全等,證明△ADE≌△GKF,則FG=AE,可得FG=2AO;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,證明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判斷;③分別表示出OD、OC,根據(jù)勾股定理逆定理可以判斷;④證明∠HEA=∠AED=∠ODE,OE≠DE,則∠DOE≠∠HEA,OD與HE不平行;

⑤由②可得,根據(jù)AR∥CD,得,則;⑥證明△HAE∽△ODE,可得,等量代換可得OE2=AH?DE;⑦分別計算HC、OG、BH的長,可得結論.【詳解】解:①如圖,過G作GK⊥AD于K,

∴∠GKF=90°,

∵四邊形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂線,

∴AE=2AO,

∴FG=2AO,

故①正確;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正確;③,,∴,∴OC與OD不垂直,故③錯誤;

④∵FH是AE的中垂線,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中點,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

當∠DOE=∠HEA時,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD與HE不平行,

故④不正確;

⑤由②知BH=,,延長CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正確;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE?2OE=AH?DE,

∴2OE2=AH?DE,

故⑥正確;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正確;

綜上所述,本題正確的有;①②⑤⑥,共4個,

故選:B.【點睛】本題是相似三角形的判定與性質以及勾股定理、線段垂直平分線的性質、正方形的性質的綜合應用,正確作輔助線是關鍵,解答時證明三角形相似是難點.6、C【詳解】根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當x=1時,y<0,即a+b+c<0,則②錯誤;根據(jù)對稱軸可得:-=-,則b=3a,根據(jù)a<0,b<0可得:a>b;則③正確;根據(jù)函數(shù)與x軸有兩個交點可得:-4ac>0,則④正確.故選C.【點睛】本題考查二次函數(shù)的性質.能通過圖象分析a,b,c的正負,以及通過一些特殊點的位置得出a,b,c之間的關系是解題關鍵.7、C【詳解】∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.8、A【分析】利用位似比為1:2,可求得點E的對應點E′的坐標為(2,-1)或(-2,1),注意分兩種情況計算.【詳解】∵E(-4,2),位似比為1:2,∴點E的對應點E′的坐標為(2,-1)或(-2,1).故選A.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比.注意位似的兩種位置關系.9、C【分析】根據(jù)函數(shù)圖象依次計算判斷即可得到答案.【詳解】∵對稱軸是直線x=-1,∴,∴,故①正確;∵圖象與x軸有兩個交點,∴>0,故②正確;∵圖象的對稱軸是直線x=-1,與x軸一個交點坐標是(2,0),∴與x軸另一個交點是(-4,0),∴方程的兩根是2和-4,故③正確;∵圖象開口向下,∴在對稱軸左側y隨著x的增大而增大,∴是拋物線上兩點,則<,故④錯誤,∴正確的有①、②、③,故選:C.【點睛】此題考查二次函數(shù)的性質,根據(jù)函數(shù)圖象判斷式子的正負,正確理解函數(shù)圖象,掌握各式子與各字母系數(shù)的關系是解題的關鍵.10、D【分析】根據(jù)圓周角定理求出,根據(jù)互余求出∠COD的度數(shù),再根據(jù)等腰三角形性質即可求出答案.【詳解】解:連接OD,,,,,.故選D.【點睛】本題考查了圓周角定理,等腰三角形性質等知識.熟練應用圓周角定理是解題的關鍵.11、C【分析】連接BC,AB=,BC=,AC=,得到△ABC是直角三角形,從而求解.【詳解】解:連接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故選:C.【點睛】本題考查直角三角形,勾股定理;熟練掌握在方格中利用勾股定理求邊長,同時判斷三角形形狀是解題的關鍵.12、C【分析】根據(jù)比例的性質得出再代入要求的式子,然后進行解答即可.【詳解】解:∵,∴a=4b,c=4d,∴,故選C.【點睛】此題考查了比例的性質,熟練掌握比例線段的性質是解題的關鍵,是一道基礎題.二、填空題(每題4分,共24分)13、<.【分析】根據(jù)反比例函數(shù)的增減性即可得出結論.【詳解】解:中,-3<0∴在每一象限內(nèi),y隨x的增大而增大∵-2<-1<0∴<故答案為:<.【點睛】本題考查了比較反比例函數(shù)值的大小,掌握反比例函數(shù)的增減性與比例系數(shù)的關系是解題的關鍵.14、【分析】與相交于點,因為平移,由此求出,從而求得【詳解】解:由沿方向平移得到,【點睛】本題考查了平移的性質,以及相似三角形的性質.15、10【分析】本題先根據(jù)垂徑定理構造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】如圖,設圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.連接OC,交AB于D點.連接OA.∵尺的對邊平行,光盤與外邊緣相切,∴OC⊥AB.∴AD=4cm.設半徑為Rcm,則R2=42+(R?2)2,解得R=5,∴該光盤的直徑是10cm.故答案為:10.【點睛】此題考查了切線的性質及垂徑定理,建立數(shù)學模型是關鍵.16、100°【分析】根據(jù)圓內(nèi)接四邊形的性質求出∠D的度數(shù),根據(jù)圓周角定理計算即可.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠B+∠D=180°,

∴∠D=180°-130°=50°,

由圓周角定理得,∠AOC=2∠D=100°,

故答案是:100°.【點睛】考查的是圓內(nèi)接四邊形的性質、圓周角定理,掌握圓內(nèi)接四邊形的對角互補、同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.17、5.5【解析】試題分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考點:相似三角形18、【分析】求出相遇前y與x的關系式,確定出甲乙兩地的距離,進而求出兩車的速度,即可求解.【詳解】設AB所在直線的解析式為:y=kx+b,把(1.5,70)與(2,0)代入得:,解得:,∴AB所在直線的解析式為:y=-140x+280,令x=0,得到y(tǒng)=280,即甲乙兩地相距280千米,設兩車相遇時,乙行駛了x千米,則甲行駛了(x+60)千米,根據(jù)題意得:x+x+60=280,解得:x=110,即兩車相遇時,乙行駛了110千米,甲行駛了170千米,∴甲車的速度為85千米/時,乙車速度為55千米/時,根據(jù)題意得:280﹣55×(280÷85)=(千米).則快車到達乙地時,慢車與甲地相距千米.故答案為:【點睛】本題主要考查根據(jù)函數(shù)圖象的信息解決行程問題,根據(jù)函數(shù)的圖象,求出AB所在直線的解析式是解題的關鍵.三、解答題(共78分)19、(1);(2)存在,或,理由見解析;(3)或.【分析】(1)將A、C的坐標代入求出a、c即可得到解析式;(2)先求出E點坐標,然后作AE的垂直平分線,與x軸交于Q,與y軸交于Q',根據(jù)垂直平分線的性質可知Q、與A、E,Q'與A、E組成的三角形是以AE為底邊的等腰三角形,設Q點坐標(0,x),Q'坐標(0,y),根據(jù)距離公式建立方程求解即可;(3)根據(jù)A、E坐標,求出AE長度,然后推出∠BAE=∠ABC=45°,設,由相似得到或,建立方程求解即可.【詳解】(1)將,代入得:,解得∴拋物線解析式為(2)存在,理由如下:聯(lián)立和,,解得或∴E點坐標為(4,-5),如圖,作AE的垂直平分線,與x軸交于Q,與y軸交于Q',此時Q點與Q'點的坐標即為所求,設Q點坐標(0,x),Q'坐標(0,y),由QA=QE,Q'A=Q'E得:,解得,故Q點坐標為或(3)∵,∴,當時,解得或3∴B點坐標為(3,0),∴∴,,,由直線可得AE與y軸的交點為(0,-1),而A點坐標為(-1,0)∴∠BAE=45°設則,∵和相似∴或,即或解得或,∴或.【點睛】本題考查二次函數(shù)的綜合問題,是中考常見的壓軸題型,熟練掌握待定系數(shù)法求函數(shù)解析式,等腰三角形的性質,以及相似三角形的性質是解題的關鍵.20、第二周的銷售價格為2元.【分析】由紀念品的進價和售價以及銷量分別表示出兩周的總利潤,根據(jù)“這批旅游紀念品共獲利1250元”等式求出即可.【詳解】解:設降低x元,由題意得出:,整理得:,解得:x1=x2=1.∴10-1=2.答:第二周的銷售價格為2元.21、9【分析】連接,首先證明是等邊三角形,再證明,推出,由此構建方程即可解決問題.【詳解】解:連接.在菱形和菱形中,,,是等邊三角形,設,則,,,,,,,,,,,或1(舍棄),,【點睛】本題考查相似多邊形的性質,等邊三角形的性質,菱形的性質等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考常考題型.22、證明見解析【解析】(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF∥BC,于是∠OEC=∠BCE,等量代換∠OEC=∠DCE,那么OE=OC,同理OC=OF,等量代換有OE=OF;

(2)由于O是CD中點,故OD=OC,而OE=OF,那么易證四邊形DECF是平行四邊形,又CE、CF是∠BCD、∠DCG的角平分線,∠BCD+∠DCG=180°那么易得∠ECF=90°,從而可證四邊形DECF是矩形.【詳解】解:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF.∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵點O為CD的中點,∴OD=OC.又∵OE=OF,∴四邊形DECF是平行四邊形.∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG,∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四邊形DECF是矩形.【點睛】本題主要考查平行線的性質及矩形的判定,證得OE=OF,得出四邊形DECF是平行四邊形是解題的關鍵,注意角平分線的應用.23、(1)見解析;(2);(3)【分析】(1)根據(jù)直徑所對的圓周角等于90°,可得∠CAB+∠ABC=90°,根據(jù)DO⊥AB,得出∠D+∠DAO=90°,進而可得出結果;(2)先證明,得出,從而可得出結果;(3)設OD與圓弧的交點為F,則根據(jù)S陰影=S△AOD-S△AOC-S扇形COF求解.【詳解】(1)證明:∵是直徑,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:設OD與圓弧的交點為F,設,則,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO為等邊三角形,S陰影=S△AOD-S扇形COF-S△AOC=.【點睛】本題主要考查圓周角定理的推論、圓中不規(guī)則圖形面積的求法、等腰三角形的性質、等邊三角形的性質與判定等知識,掌握基本性質與判定方法是解題的關鍵.注意求不規(guī)則圖形的面積時,結合割補法求解.24、見解析【分析】分別求出每一個不等式的解集,將不等式解集表示在數(shù)軸上,由兩不等式解集的公共部分可得不等式組的解集,即可求得解集內(nèi)所有整數(shù)解.【詳解】解:解不等式,得解不等式,得則不等式組的解集為在數(shù)軸上表示如下:此不等式組的整數(shù)解為,0,1.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論