![福建省龍巖市新羅區(qū)龍巖初級中學2022年數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第1頁](http://file4.renrendoc.com/view4/M02/0F/08/wKhkGGaXBc2Ac5-0AAFaU5p0ggY551.jpg)
![福建省龍巖市新羅區(qū)龍巖初級中學2022年數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第2頁](http://file4.renrendoc.com/view4/M02/0F/08/wKhkGGaXBc2Ac5-0AAFaU5p0ggY5512.jpg)
![福建省龍巖市新羅區(qū)龍巖初級中學2022年數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第3頁](http://file4.renrendoc.com/view4/M02/0F/08/wKhkGGaXBc2Ac5-0AAFaU5p0ggY5513.jpg)
![福建省龍巖市新羅區(qū)龍巖初級中學2022年數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第4頁](http://file4.renrendoc.com/view4/M02/0F/08/wKhkGGaXBc2Ac5-0AAFaU5p0ggY5514.jpg)
![福建省龍巖市新羅區(qū)龍巖初級中學2022年數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第5頁](http://file4.renrendoc.com/view4/M02/0F/08/wKhkGGaXBc2Ac5-0AAFaU5p0ggY5515.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象如圖所示,反比例函數(shù)與一次函數(shù)在同一平面直角坐標系中的大致圖象是A. B. C. D.2.如圖,在△ABC中,AD⊥BC,垂足為點D,若AC=,∠C=45°,tan∠ABC=3,則BD等于()A.2 B.3 C. D.3.如圖,,若,則的長是()A.4 B.6 C.8 D.104.一5的絕對值是()A.5 B. C. D.-55.已知關于的一元二次方程的兩根為,,則一元二次方程的根為()A.0,4 B.-3,5 C.-2,4 D.-3,16.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的長為()A.5sinA B.5cosA C.5sinA7.某班一物理科代表在老師的培訓后學會了某個物理實驗操作,回到班上后第一節(jié)課教會了若干名同學,第二節(jié)課會做該實驗的同學又教會了同樣多的同學,這樣全班共有36人會做這個實驗;若設1人每次都能教會x名同學,則可列方程為()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=368.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(
)A.15
B.12
C.9
D.69.已知點A、B、C、D、E、F是半徑為r的⊙O的六等分點,分別以A、D為圓心,AE和DF長為半徑畫圓弧交于點P.以下說法正確的是()①∠PAD=∠PDA=60o;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④10.如圖,四邊形ABCD內(nèi)接于⊙O,連接AC,BD,點E在AD的延長線上,()A.若DC平分∠BDE,則AB=BCB.若AC平分∠BCD,則C.若AC⊥BD,BD為直徑,則D.若AC⊥BD,AC為直徑,則11.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣12.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°二、填空題(每題4分,共24分)13.如圖,在半徑為2的⊙O中,弦AB⊥直徑CD,垂足為E,∠ACD=30°,點P為⊙O上一動點,CF⊥AP于點F.①弦AB的長度為_____;②點P在⊙O上運動的過程中,線段OF長度的最小值為_____.14.一組數(shù)據(jù):2,5,3,1,6,則這組數(shù)據(jù)的中位數(shù)是________.15.如圖,一路燈B距地面高BA=7m,身高1.4m的小紅從路燈下的點D出發(fā),沿A→H的方向行走至點G,若AD=6m,DG=4m,則小紅在點G處的影長相對于點D處的影長變長了_____m.16.如圖,點O是△ABC的內(nèi)切圓的圓心,若∠A=100°,則∠BOC為_____.17.如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設AB的長為x米,則菜園的面積y(平方米)與x(米)的函數(shù)表達式為________.(不要求寫出自變量x的取值范圍)18.若x1,x2是一元二次方程2x2+x-3=0的兩個實數(shù)根,則x1+x2=____.三、解答題(共78分)19.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請說明理由;(3)求當線段AM最短時的長度20.(8分)如圖,在中,,為邊上的中點,交于點,.(1)求的值;(2)若,求的值.21.(8分)如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A、B兩點,點P從點A出發(fā),沿折線AB﹣BO向終點O運動,在AB上以每秒5個單位長度的速度運動,在BO上以每秒3個單位長度的速度運動;點Q從點O出發(fā),沿OA方向以每秒個單位長度的速度運動.P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.過點P作PE⊥AO于點E,以PE,EQ為鄰邊作矩形PEQF,設矩形PEQF與△ABO重疊部分圖形的面積為S,點P運動的時間為t秒.(1)連結(jié)PQ,當PQ與△ABO的一邊平行時,求t的值;(2)求S與t之間的函數(shù)關系式,并直接寫出自變量t的取值范圍.22.(10分)如圖,在中,點在邊上,點在邊上,且,.(1)求證:∽;(2)若,,求的長.23.(10分)如果某人滑雪時沿著一斜坡下滑了130米的同時,在鉛垂方向上下降了50米,那么該斜坡的坡度是1∶_______24.(10分)已知:如圖,中,平分,是上一點,且.判斷與的數(shù)量關系并證明.25.(12分)現(xiàn)有三張分別標有數(shù)字-1,0,3的卡片,它們除數(shù)字外完全相同,將卡片背面朝上后洗勻.
(1)從中任意抽取一張卡片,抽到標有數(shù)字3的卡片的概率為;(2)從中任意抽取兩張卡片,求兩張卡片上的數(shù)字之和為負數(shù)的概率.26.如圖,△ABC內(nèi)接于⊙O,AB=AC=10,BC=12,點E是弧BC的中點.(1)過點E作BC的平行線交AB的延長線于點D,求證:DE是⊙O的切線.(2)點F是弧AC的中點,求EF的長.
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:∵由二次函數(shù)的圖象知,a<1,>1,∴b>1.∴由b>1知,反比例函數(shù)的圖象在一、三象限,排除C、D;由知a<1,一次函數(shù)的圖象與y國軸的交點在x軸下方,排除A.故選B.2、A【解析】根據(jù)三角函數(shù)定義可得AD=AC?sin45°,從而可得AD的長,再利用正切定義可得BD的長.【詳解】∵AC=6,∠C=45°∴AD=AC?sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故選A.【點睛】本題主要考查解直角三角形,三角函數(shù)的知識,熟記知識點是解題的關鍵.3、C【解析】根據(jù)相似三角形對應邊成比例即可求解.【詳解】∵△EFO∽△GHO∴∴EF=2GH=8故選:C.【點睛】本題考查了相似三角形的性質(zhì),找到對應邊建立比例式是解題的關鍵.4、A【解析】試題分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣5到原點的距離是5,所以﹣5的絕對值是5,故選A.5、B【分析】先將,代入一元二次方程得出與的關系,再將用含的式子表示并代入一元二次方程求解即得.【詳解】∵關于的一元二次方程的兩根為,∴或∴整理方程即得:∴將代入化簡即得:解得:,故選:B.【點睛】本題考查了含參數(shù)的一元二次方程求解,解題關鍵是根據(jù)已知條件找出參數(shù)關系,并代入要求的方程化簡為不含參數(shù)的一元二次方程.6、C【解析】根據(jù)三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【點睛】本題考查正弦函數(shù),掌握公式是解題關鍵.7、B【分析】設1人每次都能教會x名同學,根據(jù)兩節(jié)課后全班共有1人會做這個實驗,即可得出關于x的一元二次方程,此題得解.【詳解】設1人每次都能教會x名同學,根據(jù)題意得:1+x+(x+1)x=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.8、A【分析】根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A9、C【解析】解:∵A、B、C、D、E、F是半徑為r的⊙O的六等分點,∴,∴AE=DF<AD,根據(jù)題意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①錯誤;連接OP、AE、DE,如圖所示,∵AD是⊙O的直徑,∴AD>AE=AP,②△PAO≌△ADE錯誤,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正確;∵AO:OP:PA=r:r:r=1::.∴④正確;說法正確的是③④,故選C.10、D【分析】利用圓的相關性質(zhì),依次分析各選項作答.【詳解】解:A.若平分,則,∴A錯B.若平分,則,則,∴B錯C.若,為直徑,則∴C錯D.若,AC為直徑,如圖:連接BO并延長交于點E,連接DE,∵,∴.∵BE為直徑,∴,,∴.∴選D.【點睛】本題考查圓的相關性質(zhì),另外需結(jié)合勾股定理,三角函數(shù)相關知識解題屬于綜合題.11、C【分析】利用一元二次方程的公式法求解可得.【詳解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,則x==1±,即x1=1+,x2=1﹣,故選:C.【點睛】本題考查了一元二次方程的解法,根據(jù)一元二次方程的特征,靈活選擇解法是解題的關鍵.12、A【分析】首先根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠CBD=∠ABE,BD=BE;其次結(jié)合圖形,由等量代換,得∠EBD=∠ABC;最后根據(jù)等腰三角形的性質(zhì),得出∠BED=∠BDE,利用三角形內(nèi)角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì),以及三角形內(nèi)角和定理.解題的關鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)得出旋轉(zhuǎn)前后的對應角、對應邊分別相等,利用等腰三角形的性質(zhì)得出“等邊對等角”,再結(jié)合三角形內(nèi)角和定理,即可得解.二、填空題(每題4分,共24分)13、2.-1【分析】①在Rt△AOE中,解直角三角形求出AE即可解決問題.②取AC的中點H,連接OH,OF,HF,求出OH,F(xiàn)H,根據(jù)OF≥FH-OH,即,由此即可解決問題.【詳解】解:①如圖,連接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA?sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案為2.②取AC的中點H,連接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值為﹣1.故答案為﹣1.【點睛】本題考查軌跡,圓周角定理,解直角三角形等知識,解題的關鍵是靈活運用所學知識解決問題.14、3【解析】根據(jù)中位數(shù)的定義進行求解即可得出答案.【詳解】將數(shù)據(jù)從小到大排列:1,2,3,5,6,處于最中間的數(shù)是3,∴中位數(shù)為3,故答案為:3.【點睛】本題考查了中位數(shù)的定義,中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小排列,處于最中間(中間兩數(shù)的平均數(shù))的數(shù)即為這組數(shù)據(jù)的中位數(shù).15、1.【分析】根據(jù)由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,即、,據(jù)此求得DE、HG的值,從而得出答案.【詳解】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴、,即、,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影長變長1m.故答案為:1.【點睛】本題考查了相似三角形的應用:利用影長測量物體的高度,通常利用相似三角形的性質(zhì)即相似三角形的對應邊的比相等和“在同一時刻物高與影長的比相等”的原理解決.16、140°.【分析】根據(jù)內(nèi)心的定義可知OB、OC為∠ABC和∠ACB的角平分線,根據(jù)三角形內(nèi)角和定理可求出∠OBC+∠OCB的度數(shù),進而可求出∠BOC的度數(shù).【詳解】∵點O是△ABC的內(nèi)切圓的圓心,∴OB、OC為∠ABC和∠ACB的角平分線,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案為:140°【點睛】本題考查了三角形內(nèi)心的定義及三角形內(nèi)角和定理,熟練掌握三角形內(nèi)切圓的圓心是三角形三條角平分線的交點是解題關鍵.17、y=-x2+15x【分析】由AB邊長為x米,根據(jù)已知可以推出BC=(30-x),然后根據(jù)矩形的面積公式即可求出函數(shù)關系式.【詳解】∵AB邊長為x米,而菜園ABCD是矩形菜園,∴BC=(30-x),菜園的面積=AB×BC=(30-x)?x,則菜園的面積y(單位:米2)與x(單位:米)的函數(shù)關系式為:y=-x2+15x,故答案為y=-x2+15x.【點睛】本題考查了二次函數(shù)的應用,正確分析,找準各量間的數(shù)量關系列出函數(shù)關系式是解題的關鍵.18、【分析】直接利用根與系數(shù)的關系求解.【詳解】解:根據(jù)題意得x1+x2═故答案為.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=,x1?x2=.三、解答題(共78分)19、(1)證明見解析;(2)BE=1或;(3).【解析】試題分析:(1)由AB=AC,根據(jù)等邊對等角,可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質(zhì),易證得∠CEM=∠BAE,則可證得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可求得答案;(3)先設BE=x,由△ABE∽△ECM,根據(jù)相似三角形的對應邊成比例,易得CM=-(x-3)2+,利用二次函數(shù)的性質(zhì),繼而求得線段AM的最小值.試題解析:(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴∴CE=∴BE=6-∴BE=1或(3)解:設BE=x,又∵△ABE∽△ECM,∴即:∴CM=∴AM=-5-CM=∴當x=3時,AM最短為.考點:相似形綜合題.20、(1)(2)【分析】(1)根據(jù)題意證出∠B=∠ADE,進而設出DE和AD的值,再結(jié)合勾股定理求出AE的值即可得出答案;(2)根據(jù)斜中定理求出AD和AB的值,結(jié)合∠B和∠AED的sin值求出AC和AE的值,相減即可得出答案.【詳解】(1)∵,∴.又∵,∴.設,則.在中,,則.(2)∵為斜邊上的中點,∴,∴.則,,∴.【點睛】本題考查的是解直角三角形,難度適中,需要熟練掌握直角三角形中的相關性質(zhì)與定理.21、(1)當與的一邊平行時,或;(2)【分析】(1)先根據(jù)一次函數(shù)確定點、的坐標,再由、,可得、,由此構(gòu)建方程即可解決問題;(2)根據(jù)點在線段上、點在線段上的位置不同、自變量的范圍不同,進行分類討論,得出與的分段函數(shù).【詳解】解:(1)∵在中,令,則;令,則∴,∴,①當時,,則∴∴②當時,,則∴∴∴綜上所述,當與的一邊平行時,或.(2)①當0≤t≤時,重疊部分是矩形PEQF,如圖:∴∴∴∴,,∴;②當<t≤2時,如圖,重疊部分是四邊形PEQM,∴,,,,易得∴,∴;③當2<t≤3時,重疊部分是五邊形MNPOQ,如圖:∴∴,∴,∴,,,∴;④當3<t<4時,重疊部分是矩形POQF,如圖:∵,,∴,∴綜上所述,.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及矩形和梯形的面積求法等知識,利用分類討論的思想方法是解題的關鍵.22、(1)證明見解析;(1)AB=1.【分析】(1)由題意根據(jù)相似三角形的判定定理即可證明∽;(1)根據(jù)題意利用相似三角形的相似比,即可分析求解.【詳解】解:(1)證明:∵,.∴.∵∴,∵為公共角,∴∽.(1)∵∽∴∴∴(-1舍去)∴.【點睛】本題主要考查相似三角形的判定和性質(zhì),能夠證得∽是解答此題的關鍵.23、2.4.【解析】試題解析:如圖所示:AC=130米,BC=50米,則米,則坡比故答案為:24、,理由見解析.【分析】根據(jù)題意,先證明∽,則,得到,然后得到結(jié)論成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年板牙鉸手項目投資價值分析報告
- 2025至2030年抱子甘藍項目投資價值分析報告
- 2025至2030年復方沙丁胺醇氣霧劑項目投資價值分析報告
- 2025至2030年中國下刀軸數(shù)據(jù)監(jiān)測研究報告
- 人汽車訂購合同范本
- 2023年婚姻家庭咨詢師練習試題及答案
- 企業(yè)人力資源管理師Vip協(xié)議班
- 2025年度保健藥品出口運輸及清關服務合同
- 虛擬現(xiàn)實解除居間合同
- 工廠商業(yè)技術(shù)保密協(xié)議書
- (完整)讀歌詞猜歌名
- 八年級下開學第一課主題班會
- 初中英語人教版 八年級上冊 單詞默寫表 漢譯英
- pcs-9611d-x說明書國內(nèi)中文標準版
- GB/T 1634.1-2004塑料負荷變形溫度的測定第1部分:通用試驗方法
- 數(shù)據(jù)結(jié)構(gòu)英文教學課件:chapter4 Stacks and Queues
- 無人機航拍技術(shù)理論考核試題題庫及答案
- T∕CMATB 9002-2021 兒童肉類制品通用要求
- 工序勞務分包管理課件
- 暖通空調(diào)(陸亞俊編)課件
- 工藝評審報告
評論
0/150
提交評論