2023屆揚州梅嶺中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第1頁
2023屆揚州梅嶺中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第2頁
2023屆揚州梅嶺中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第3頁
2023屆揚州梅嶺中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第4頁
2023屆揚州梅嶺中學九年級數(shù)學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在矩形中,于,設(shè),且,,則的長為()A. B. C. D.2.如圖,將∠AOB放置在5×5的正方形網(wǎng)格中,則tan∠AOB的值是A. B. C. D.3.某數(shù)學興趣小組開展動手操作活動,設(shè)計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應(yīng)的造型,則所用鐵絲的長度關(guān)系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:學*科*網(wǎng)]4.一元二次方程的一次項系數(shù)和常數(shù)項依次是()A.-1和1 B.1和1 C.2和1 D.0和15.如圖,點,,均在坐標軸上,,過,,作,是上任意一點,連結(jié),,則的最大值是()A.4 B.5 C.6 D.6.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB7.下列關(guān)系式中,是反比例函數(shù)的是()A.y= B.y= C.xy=﹣ D.=18.如圖,已知OB為⊙O的半徑,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,則CD長為()A.3cm B.6cm C.12cm D.24cm9.4月24日是中國航天日,1970年的這一天,我國自行設(shè)計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標志著中國從此進入了太空時代,它的運行軌道,距地球最近點439000米.將439000用科學記數(shù)法表示應(yīng)為()A.0.439×106 B.4.39×106 C.4.39×105 D.139×10310.如圖,一條拋物線與軸相交于、兩點(點在點的左側(cè)),其頂點在線段上移動.若點、的坐標分別為、,點的橫坐標的最大值為,則點的橫坐標的最小值為()A. B. C. D.11.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象可能是()A. B. C. D.12.將二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=()A.1 B. C. D.二、填空題(每題4分,共24分)13.分解因式:=_________.14.如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.15.已知關(guān)于的方程的一個根為-2,則方程另一個根為__________.16.已知二次函數(shù)的圖象如圖所示,則下列四個代數(shù)式:①,②,③;④中,其值小于的有___________(填序號).17.若關(guān)于x的一元二次方程x2﹣4x+m=0沒有實數(shù)根,則m的取值范圍是_____.18.如圖,在平面直角坐標系中,矩形的兩邊在其坐標軸上,以軸上的某一點為位似中心作矩形,使它與矩形位似,且點,的坐標分別為,,則點的坐標為__________.三、解答題(共78分)19.(8分)如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD.(2)求證:CE∥AD;(3)若AD=4,AB=6,求AF的值.20.(8分)如圖,已知拋物線(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C,且OC=OB.(1)求此拋物線的解析式;(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉(zhuǎn)90°后,點A的對應(yīng)點A′恰好也落在此拋物線上,求點P的坐標.21.(8分)如圖,在矩形ABCD中,AB=6,BC=8,點E,F(xiàn)分別在邊BC,AB上,AF=BE=2,連結(jié)DE,DF,動點M在EF上從點E向終點F勻速運動,同時,動點N在射線CD上從點C沿CD方向勻速運動,當點M運動到EF的中點時,點N恰好與點D重合,點M到達終點時,M,N同時停止運動.(1)求EF的長.(2)設(shè)CN=x,EM=y(tǒng),求y關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍.(3)連結(jié)MN,當MN與△DEF的一邊平行時,求CN的長.22.(10分)已知關(guān)于x的一元二次方程x1=1(1-m)x-m1有兩個實數(shù)根為x1,x1.(1)求m的取值范圍;(1)設(shè)y=x1+x1,求當m為何值時,y有最小值.23.(10分)解方程:24.(10分)如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)求PD的長.25.(12分)已知:如圖,C,D是以AB為直徑的⊙O上的兩點,且OD∥BC.求證:AD=DC.26.如圖,為了測量山腳到塔頂?shù)母叨龋吹拈L),某同學在山腳處用測角儀測得塔頂?shù)难鼋菫椋傺仄露葹榈男∩狡虑斑M400米到達點,在處測得塔頂?shù)难鼋菫?(1)求坡面的鉛垂高度(即的長);(2)求的長.(結(jié)果保留根號,測角儀的高度忽略不計).

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)矩形的性質(zhì)可知:求AD的長就是求BC的長,易得∠BAC=∠ADE,于是可利用三角函數(shù)的知識先求出AC,然后在直角△ABC中根據(jù)勾股定理即可求出BC,進而可得答案.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠BAC=90°,BC=AD,∴∠BAC+∠DAE=90°,∵,∴∠ADE+∠DAE=90°,∴∠BAC=,在直角△ABC中,∵,,∴,∴AD=BC=.故選:C.【點睛】本題考查了矩形的性質(zhì)、勾股定理和解直角三角形的知識,屬于??碱}型,熟練掌握矩形的性質(zhì)和解直角三角形的知識是解題關(guān)鍵.2、B【解析】分析:認真讀圖,在以∠AOB的O為頂點的直角三角形里求tan∠AOB的值:tan∠AOB=.故選B.3、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象4、A【分析】找出2x2-x+1的一次項-x、和常數(shù)項+1,再確定一次項的系數(shù)即可.【詳解】2x2-x+1的一次項是-x,系數(shù)是-1,常數(shù)項是1.故選A.【點睛】本題考查一元二次方程的一般形式.5、C【分析】連接,,如圖,利用圓周角定理可判定點在上,易得,,,,,設(shè),則,由于表示點到原點的距離,則當為直徑時,點到原點的距離最大,由于為平分,則,利用點在圓上得到,則可計算出,從而得到的最大值.【詳解】解:連接,,如圖,,為的直徑,點在上,,,,,,,設(shè),,而表示點到原點的距離,當為直徑時,點到原點的距離最大,為平分,,,,即,此時,即的最大值是1.故選:.【點睛】本題考查了點與圓的位置關(guān)系、圓周角定理、勾股定理等,作出輔助線,得到是解題的關(guān)鍵.6、D【解析】解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.7、C【解析】反比例函數(shù)的一般形式是y=(k≠0).【詳解】解:A、當k=0時,該函數(shù)不是反比例函數(shù),故本選項錯誤;B、該函數(shù)是正比例函數(shù),故本選項錯誤;C、由原函數(shù)變形得到y(tǒng)=-,符合反比例函數(shù)的定義,故本選項正確;D、只有一個變量,它不是函數(shù)關(guān)系式,故本選項錯誤.故選C.【點睛】本題考查了正比例函數(shù)及反比例函數(shù)的定義,注意區(qū)分:正比例函數(shù)的一般形式是y=kx(k≠0),反比例函數(shù)的一般形式是y=(k≠0).8、C【分析】根據(jù)OB=10cm,OM:MB=4:1,可求得OM的長,再根據(jù)垂徑定理和勾股定理可計算出答案.【詳解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故選:C.【點睛】本題考查了垂徑定理和勾股定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。?、C【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將439000用科學記數(shù)法表示為4.39×1.

故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、C【分析】根據(jù)頂點在線段上移動,又知點、的坐標分別為、,再根據(jù)平行于軸,之間距離不變,點的橫坐標的最大值為,分別求出對稱軸過點和時的情況,即可判斷出點橫坐標的最小值.【詳解】根據(jù)題意知,點的橫坐標的最大值為,此時對稱軸過點,點的橫坐標最大,此時的點坐標為,當對稱軸過點時,點的橫坐標最小,此時的點坐標為,點的坐標為,故點的橫坐標的最小值為,故選:C.【點睛】本題考查了拋物線與軸的交點,二次函數(shù)的圖象與性質(zhì).解答本題的關(guān)鍵是理解二次函數(shù)在平行于軸的直線上移動時,兩交點之間的距離不變.11、C【解析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經(jīng)過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項圖象符合.故選C.考點:1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.12、D【分析】根據(jù)題意可以寫出平移后的函數(shù)解析式,然后根據(jù)截x軸所得的線段長為4,可以求得a的值,本題得以解決.【詳解】解:二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位之后的函數(shù)解析式為y=a(x﹣3)2﹣2,當y=0時,ax2﹣6ax+9a﹣2=0,設(shè)方程ax2﹣6ax+9a﹣2=0的兩個根為x1,x2,則x1+x2=6,x1x2=,∵平移后的函數(shù)截x軸所得的線段長為4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故選:D.【點睛】本題考查解二次函數(shù)綜合題,解題關(guān)鍵是根據(jù)題意可以寫出平移后的函數(shù)解析式.二、填空題(每題4分,共24分)13、【解析】提取公因式法和公式法因式分解.【分析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.14、【分析】由旋轉(zhuǎn)的性質(zhì)可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉(zhuǎn)化為求兩個特殊三角形的面積即可.【詳解】解:連接PQ,由旋轉(zhuǎn)的性質(zhì)可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等邊三角形,∴PQ=BP,在等邊三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ與△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因為,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案為:【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定、勾股定理的逆定理及特殊三角形的面積,解題的關(guān)鍵是作出輔助線,轉(zhuǎn)化為特殊三角形進行求解.15、1【分析】將方程的根-2代入原方程求出m的值,再解方程即可求解.【詳解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程為:,解方程得:.故答案為:1.【點睛】本題考查的知識點是解一元二次方程,根據(jù)方程的一個解求出方程中參數(shù)的值是解此題的關(guān)鍵.16、②④【分析】①根據(jù)函數(shù)圖象可得的正負性,即可判斷;②令,即可判斷;③令,方程有兩個不相等的實數(shù)根即可判斷;④根據(jù)對稱軸大于0小于1即可判斷.【詳解】①由函數(shù)圖象可得、∵對稱軸∴∴②令,則③令,由圖像可知方程有兩個不相等的實數(shù)根∴④∵對稱軸∴∴綜上所述,值小于的有②④.【點睛】本題考察二次函數(shù)圖象與系數(shù)的關(guān)系,充分利用圖象獲取解題的關(guān)鍵信息是關(guān)鍵.17、m>4【分析】根據(jù)根的判別式即可求出答案.【詳解】解:由題意可知:△<0,∴,∴m>4故答案為:m>4【點睛】本題考查根的判別式,解題的關(guān)鍵是熟練運用根的判別式.18、【分析】首先求出位似圖形的位似中心坐標,然后即可得出點D的坐標.【詳解】連接BF交軸于P,如圖所示:∵矩形和矩形,點,的坐標分別為,,∴點C的坐標為∵BC∥GF∴∴GP=1,PC=2,OP=3∴點P即為其位似中心∴OD=6∴點D坐標為故答案為:.【點睛】此題主要考查位似圖形的性質(zhì),熟練掌握,即可解題.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析;(3)AF=.【分析】(1)先根據(jù)角平分線得出∠CAD=∠CAB,進而判斷出△ADC∽△ACB,即可得出結(jié)論;(2)先利用直角三角形的性質(zhì)得出CE=AE,進而得出∠ACE=∠CAE,從而∠CAD=∠ACE,即可得出結(jié)論;(3)由(1)的結(jié)論求出AC,再求出CE=3,最后由(2)的結(jié)論得出△CFE∽△AFD,即可得出結(jié)論.【詳解】解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD?AB;(2)在Rt△ABC中,∵E為AB的中點,∴CE=AE(直角三角形斜邊的中線等于斜邊的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD?AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E為AB的中點,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.【點睛】此題考查的是相似三角形的判定及性質(zhì)、直角三角形的性質(zhì)和平行線的判定,掌握相似三角形的判定及性質(zhì)、直角三角形斜邊的中線等于斜邊的一半和平行線的判定是解決此題的關(guān)鍵.20、(1)y=-x2-2x+3(2)(-,)(3)滿足條件的點P的坐標為P(-1,1)或(-1,-2)【詳解】(1)∵拋物線()與x軸交于點A(1,0)和點B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求拋物線解析式為:;(2)如圖2,過點E作EF⊥x軸于點F,設(shè)E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四邊形BOCE==BF?EF+(OC+EF)?OF===,∴當a=時,S四邊形BOCE最大,且最大值為.此時,點E坐標為(,);(3)∵拋物線的對稱軸為x=﹣1,點P在拋物線的對稱軸上,∴設(shè)P(﹣1,m),∵線段PA繞點P逆時針旋轉(zhuǎn)90°后,點A的對應(yīng)點A′恰好也落在此拋物線上,如圖,∴PA=PA′,∠APA′=90°,如圖3,過A′作A′N⊥對稱軸于N,設(shè)對稱軸與x軸交于點M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠MPA,在△A′NP與△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).考點:1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問題;4.旋轉(zhuǎn)的性質(zhì);5.綜合題;6.壓軸題.21、(1)EF=2;(2)y=x(0≤x≤1);(3)滿足條件的CN的值為或1.【分析】(1)在Rt△BEF中,利用勾股定理即可解決問題.(2)根據(jù)速度比相等構(gòu)建關(guān)系式解決問題即可.(3)分兩種情形如圖3﹣1中,當MN∥DF,延長FE交DC的延長線于H.如圖3﹣2中,當MN∥DE,分別利用平行線分線段成比例定理構(gòu)建方程解決問題即可.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由題意:=,∴=,∴y=x(0≤x≤1).(3)如圖3﹣1中,延長FE交DC的延長線于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=1,當MN∥DF時,=,∴=,∵y=x,解得x=,如圖3﹣2中,當MN∥DE時,=,∴=,∵y=x,解得x=1,綜上所述,滿足條件的CN的值為或1.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是學會利用參數(shù)構(gòu)建方程解決問題,屬于中考常考題型.22、(1)m≤;(1)m=【分析】(1)若一元二次方程有兩個實數(shù)根,則根的判別式△=b1-4ac≥0,建立關(guān)于m的不等式,可求出m的取值范圍;

(1)根據(jù)根與系數(shù)的關(guān)系可得出x1+x1的表達式,進而可得出y、m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)及(1)題得出的自變量的取值范圍,即可求出y有最小值時及對應(yīng)的m值.【詳解】解:(1)將原方程整理為x1+1(m-1)x+m1=0;∵原方程有兩個實數(shù)根,∴△=〔1(m-1)〕1-4m1=-8m+4≥0,∴m≤(1)∵x1,x1為方程的兩根,∴y=x1+x1=-1m+1,∵-1<0∴y隨m的增大而減小∵m≤∴當m=時,y有最小值.【點睛】此題是根的判別式、根與系數(shù)的關(guān)系與一次函數(shù)的結(jié)合題.牢記一次函數(shù)的性質(zhì)是解答(1)題的關(guān)鍵.23、(1),;(2)【分析】(1)先移項,再利用配方法求解即可.(2)合并同類項,再利用配方法求解即可.【詳解】(1)解得,(2)解得【點睛】本題考查了一元二次方程的計算,掌握利用配方法求方程的解是解題的關(guān)鍵.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論