江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省蘇州市新草橋中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.比較cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°2.如圖,一張矩形紙片ABCD的長AB=xcm,寬BC=y(tǒng)cm,把這張紙片沿一組對邊AB和D的中點連線EF對折,對折后所得矩形AEFD與原矩形ADCB相似,則x:y的值為()A.2 B. C. D.3.拋物線y=(x﹣1)2﹣2的頂點是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)4.下列方程中,屬于一元二次方程的是()A. B. C. D.5.如圖,在矩形ABCD中,AB=4,AD=3,若以A為圓心,4為半徑作⊙A.下列四個點中,在⊙A外的是()A.點A B.點B C.點C D.點D6.若關(guān)于的方程有兩個相等的根,則的值為()A.10 B.10或14 C.-10或14 D.10或-147.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數(shù)為()A.20° B.30° C.40° D.45°8.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC.若S△BDE:S△ADE=1:2.則S△DOE:S△AOC的值為()A. B. C. D.9.二次函數(shù)圖象的頂點坐標(biāo)是()A. B. C. D.10.將拋物線y=(x-3)2-2向左平移()個單位后經(jīng)過點A(2,2)A.1 B.2 C.3 D.4二、填空題(每小題3分,共24分)11.如圖,正方形的頂點、在圓上,若,圓的半徑為2,則陰影部分的面積是__________.(結(jié)果保留根號和)12.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.13.如圖,在的同側(cè),,點為的中點,若,則的最大值是_____.14.拋擲一枚質(zhì)地均勻的硬幣一次,正面朝上的概率是_____.15.如圖,⊙O與矩形ABCD的邊AB、CD分別相交于點E、F、G、H,若AE+CH=6,則BG+DF為_________.16.已知△ABC,D、E分別在AC、BC邊上,且DE∥AB,CD=2,DA=3,△CDE面積是4,則△ABC的面積是______17.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.18.如圖,中,ACB=90°,AC=4,BC=3,則_______.三、解答題(共66分)19.(10分)如圖,,D、E分別是半徑OA和OB的中點,求證:CD=CE.20.(6分)計算:(1);(2)解方程21.(6分)如圖,在ABC中,AC=BC,∠ACB=120°,點D是AB邊上一點,連接CD,以CD為邊作等邊CDE.(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長;(2)如圖2,點D在AB邊上移動過程中,連接BE,取BE的中點F,連接CF,DF,過點D作DG⊥AC于點G.①求證:CF⊥DF;②如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.22.(8分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交AB、AC于點E、F,(1)求證:BC是⊙O切線;(2)設(shè)AB=m,AF=n,試用含m、n的代數(shù)式表示線段AD的長.23.(8分)為了創(chuàng)建國家級衛(wèi)生城區(qū),某社區(qū)在九月份購買了甲、乙兩種綠色植物共1100盆,共花費了27000元.已知甲種綠色植物每盆20元,乙種綠色植物每盆30元.(1)該社區(qū)九月份購買甲、乙兩種綠色植物各多少盆?(2)十月份,該社區(qū)決定再次購買甲、兩種綠色植物.已知十月份甲種綠色植物每盆的價格比九月份的價格優(yōu)惠元,十月份乙種綠色植物每盆的價格比九月份的價格優(yōu)惠.因創(chuàng)衛(wèi)需要,該社區(qū)十月份購買甲種綠色植物的數(shù)量比九月份的數(shù)量增加了,十為份購買乙種綠色植物的數(shù)量比九月份的數(shù)量增加了.若該社區(qū)十月份的總花費與九月份的總花費恰好相同,求的值.24.(8分)在中,分別是的中點,連接求證:四邊形是矩形;請用無刻度的直尺在圖中作出的平分線(保留作圖痕跡,不寫作法).25.(10分)如圖是由24個小正方形組成的網(wǎng)格圖,每一個正方形的頂點都稱為格點,的三個頂點都是格點.請按要求完成下列作圖,每個小題只需作出一個符合條件的圖形.(1)在圖1網(wǎng)格中找格點,作直線,使直線平分的面積;(2)在圖2網(wǎng)格中找格點,作直線,使直線把的面積分成兩部分.26.(10分)某校為了豐富學(xué)生課余生活,計劃開設(shè)以下社團(tuán):A.足球、B.機(jī)器人、C.航模、D.繪畫,學(xué)校要求每人只能參加一個社團(tuán)小麗和小亮準(zhǔn)備隨機(jī)報名一個項目.(1)求小亮選擇“機(jī)器人”社團(tuán)的概率為______;(2)請用樹狀圖或列表法求兩人至少有一人參加“航?!鄙鐖F(tuán)的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)同名三角函數(shù)大小的比較方法比較即可.【詳解】∵,∴.故選:A.【點睛】本題考查了同名三角函數(shù)大小的比較方法,熟記銳角的正弦、正切值隨角度的增大而增大;銳角的余弦、余切值隨角度的增大而減?。?、B【分析】根據(jù)相似多邊形對應(yīng)邊的比相等,可得到一個方程,解方程即可求得.【詳解】解:∵四邊形ABCD是矩形,寬BC=y(tǒng)cm,

∴AD=BC=ycm,

由折疊的性質(zhì)得:AE=AB=x,

∵矩形AEFD與原矩形ADCB相似,

∴,即,

∴x2=2y2,

∴x=y,

∴.

故選:B.【點睛】本題考查了相似多邊形的性質(zhì)、矩形的性質(zhì)、翻折變換的性質(zhì);根據(jù)相似多邊形對應(yīng)邊的比相等得出方程是解決本題的關(guān)鍵.3、A【分析】根據(jù)頂點式的坐標(biāo)特點直接寫出頂點坐標(biāo)即可解決.【詳解】解:∵y=(x﹣1)2﹣2是拋物線解析式的頂點式,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(1,﹣2).故選:A.【點睛】本題考查了頂點式,解決本題的關(guān)鍵是正確理解二次函數(shù)頂點式中頂點坐標(biāo)的表示方法.4、D【分析】根據(jù)一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0,對各選項分析判斷后利用排除法求解.【詳解】解:A.不是一元二次方程;B.不是一元二次方程;C.整理后可知不是一元二次方程;D.整理后是一元二次方程;故選:D.【點睛】本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).5、C【解析】連接AC,利用勾股定理求出AC的長度,即可解題.【詳解】解:如下圖,連接AC,∵圓A的半徑是4,AB=4,AD=3,∴由勾股定理可知對角線AC=5,∴D在圓A內(nèi),B在圓上,C在圓外,故選C.【點睛】本題考查了圓的簡單性質(zhì),屬于簡單題,利用勾股定理求出AC的長是解題關(guān)鍵.6、D【分析】根據(jù)題意利用根的判別式,進(jìn)行分析計算即可得出答案.【詳解】解:∵關(guān)于的方程有兩個相等的根,∴,即有,解得10或-14.故選:D.【點睛】本題考查的是根的判別式,熟知一元二次方程中,當(dāng)時,方程有兩個相等的兩個實數(shù)根是解答此題的關(guān)鍵.7、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠D=180°-∠B=120°,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】∴∠B=60°,∵四邊形ABCD是圓內(nèi)接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.8、B【分析】依次證明和,利用相似三角形的性質(zhì)解題.【詳解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故選:B.【點睛】本題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是靈活運用形似三角形的判定及其性質(zhì)來分析、判斷、推理或解答.9、A【分析】根據(jù)二次函數(shù)頂點式即可得出頂點坐標(biāo).【詳解】∵,∴二次函數(shù)圖像頂點坐標(biāo)為:.故答案為A.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).10、C【分析】直接利用二次函數(shù)平移規(guī)律結(jié)合二次函數(shù)圖像上點的性質(zhì)進(jìn)而得出答案.【詳解】解:∵將拋物線向左平移后經(jīng)過點∴設(shè)平移后的解析式為∴∴或(不合題意舍去)∴將拋物線向左平移個單位后經(jīng)過點.故選:C【點睛】本題主要考查的是二次函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】設(shè)AD和BC分別與圓交于點E和F,連接AF、OE,過點O作OG⊥AE,根據(jù)90°的圓周角對應(yīng)的弦是直徑,可得AF為圓的直徑,從而求出AF,然后根據(jù)銳角三角函數(shù)和勾股定理,即可求出∠AFB和BF,然后根據(jù)平行線的性質(zhì)、銳角三角函數(shù)和圓周角定理,即可求出OG、AG和∠EOF,最后利用S陰影=S梯形AFCD-S△AOE-S扇形EOF計算即可.【詳解】解:設(shè)AD和BC分別與圓交于點E和F,連接AF、OE,過點O作OG⊥AE∵四邊形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=cm∴AF為圓的直徑∵,圓的半徑為2,∴AF=4cm在Rt△ABF中sin∠AFB=,BF=∴∠AFB=60°,F(xiàn)C=BC-BF=∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·AO=,AG=cos∠EAF·AO=1cm根據(jù)垂徑定理,AE=2AG=2cm∴S陰影=S梯形AFCD-S△AOE-S扇形EOF===故答案為:.【點睛】此題考查的是求不規(guī)則圖形的面積,掌握正方形的性質(zhì)、90°的圓周角對應(yīng)的弦是直徑、垂徑定理、勾股定理和銳角三角函數(shù)的結(jié)合和扇形的面積公式是解決此題的關(guān)鍵.12、30°【解析】試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.13、14【分析】如圖,作點A關(guān)于CM的對稱點A′,點B關(guān)于DM的對稱點B′,證明△A′MB′為等邊三角形,即可解決問題.【詳解】解:如圖,作點關(guān)于的對稱點,點關(guān)于的對稱點.,,,,,為等邊三角形,的最大值為,故答案為.【點睛】本題考查等邊三角形的判定和性質(zhì),兩點之間線段最短,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會利用兩點之間線段最短解決最值問題14、【分析】拋擲一枚質(zhì)地均勻的硬幣,其等可能的情況有2個,求出正面朝上的概率即可.【詳解】拋擲一枚質(zhì)地均勻的硬幣,等可能的情況有:正面朝上,反面朝上,則P(正面朝上)=.故答案為.【點睛】本題考查了概率公式,概率=發(fā)生的情況數(shù)÷所有等可能情況數(shù).15、6【分析】作EM⊥BC,HN⊥AD,易證得,繼而證得,利用等量代換即可求得答案.【詳解】過E作EM⊥BC于M,過H作HN⊥AD于N,如圖,∵四邊形ABCD為矩形,∴AD∥BC,∴,∴,∵四邊形ABCD為矩形,且EM⊥BC,HN⊥AD,∴四邊形ABME、EMHN、NHCD均為矩形,∴,AE=BM,EN=MH,ND=HC,在和中,∴(HL),∴,∴,故答案為:【點睛】本題考查了矩形的判定和性質(zhì)、直角三角形的判定和性質(zhì)、平行弦所夾的弧相等、等弧對等弦等知識,靈活運用等量代換是解題的關(guān)鍵.16、25【分析】根據(jù)DE∥AB得到△CDE∽△CAB,再由CD和DA的長度得到相似比,從而確定△ABC的面積.【詳解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面積是4,∴,即,∴△ABC的面積為25.【點睛】本題考查了相似三角形的判定和性質(zhì),解題的關(guān)鍵是掌握相似三角形的面積之比等于相似比的平方.17、3.【分析】先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設(shè)AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問題.18、【分析】先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=.故答案為.【點睛】本題考查了解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.三、解答題(共66分)19、證明見解析.【分析】連接OC,證明三角形△COD和△COE全等;然后利用全等三角形的對應(yīng)邊相等得到CD=CE.【詳解】解:連接OC.在⊙O中,∵,∴∠AOC=∠BOC,∵OA=OB,D.E分別是半徑OA和OB的中點,∴OD=OE,∵OC=OC(公共邊),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的對應(yīng)邊相等).【點睛】本題考查圓心角、弧、弦的關(guān)系;全等三角形的判定與性質(zhì).20、(1);(2)【分析】(1)先把特殊角的三角函數(shù)值代入原式,然后再計算;

(2)利用配方法求解即可.【詳解】解:(1)原式(2)∵,∴,即,則,∴.【點睛】本題考查了特殊角的三角函數(shù)值以及用因式分解法解方程.記住特殊角的三角函數(shù)值是解題關(guān)鍵,21、(1);(2)①證明見解析;②.【分析】(1)過點C作CH⊥AB于點H,由等腰三角形的性質(zhì)和直角三角形的性質(zhì)可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延長BC到N,使CN=BC,由“SAS”可證CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位線定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可證DG=CF,DG∥CF,即可證四邊形CFDG是矩形,可得結(jié)論;②由“SAS”可證EFD≌BF,可得B=DE,則當(dāng)CD取最小值時,有最小值,即可求解.【詳解】解:(1)如圖1,過點C作CH⊥AB于點H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如圖2,延長BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵ECD是等邊三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴CEN≌CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四邊形CFDG是平行四邊形,又∵∠ACF=90°,∴四邊形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如圖3,連接B,∵將CFD沿CF翻折得CF,∴CD=C,DF=F,∠CFD=∠CF=90°,又∵EF=BF,∠EFD=∠BF,∴EFD≌BF(SAS),∴B=DE,∴B=CD,∵當(dāng)B取最小值時,有最小值,∴當(dāng)CD取最小值時,有最小值,∵當(dāng)CD⊥AB時,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.【點睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),矩形的判定和性質(zhì),等腰三角形的性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造全等三角形是本題的關(guān)鍵.22、(1)見解析;(2)【分析】(1)連接OD,由AD為角平分線得到∠BAD=∠CAD,再由等邊對等角得到∠OAD=∠ODA,等量代換得到∠ODA=∠CAD,進(jìn)而得到OD∥AC,得到OD與BC垂直,即可得證;

(2)連接DF,由(1)得到BC為圓O的切線,結(jié)合角度的運算得出∠CDF=∠DAF,進(jìn)而得到∠AFD=∠ADB,結(jié)合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【詳解】(1)證明:如圖,連接OD,則OD為圓O的半徑,∵AD平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC=∠C=90°即OD⊥BC,∴BC是⊙O切線.(2)連接DF,OF,由(1)知BC為圓O的切線,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF,∵OD=OF,∴∠ODF=∠OFD=,又∵∠DAF=,∴∠ODF=∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA=∠CFD,

∴∠AFD=∠ADB,

∵∠BAD=∠DAF,

∴△ABD∽△ADF,∴,則∵AB=m,AF=n,∴∴【點睛】此題屬于圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.23、(1)該社區(qū)九月份購買甲、乙兩種綠色植物分別為600,500盆;(2)a的值為1【分析】(1)設(shè)該社區(qū)九月份購買甲、乙兩種綠色植物分別為x,y盆,根據(jù)甲、乙兩種綠色植物共1100盆和共花費了27000元列二元一次方程組即可;(2)結(jié)合(1)根據(jù)題意列出關(guān)于a的方程,用換元法,設(shè),化簡方程,求解即可.【詳解】解:(1)設(shè)該社區(qū)九月份購買甲、乙兩種綠色植物分別為x,y盆,由題意知,,解得,,答:該社區(qū)九月份購買甲、乙兩種綠色植物分別為600,500盆;(2)由題意知,,令,原式可化為,解得,(舍去),,∴,∴a的值為1.【點睛】本題考查了二元一次方程組和一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論