




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省襄州區(qū)2025屆數(shù)學九上期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.22.已知圓錐的母線長為4,底面圓的半徑為3,則此圓錐的側面積是()A.6π B.9π C.12π D.16π3.某樓盤準備以每平方米16000元的均價對外銷售,由于受有關房地產的新政策影響,購房者持幣觀望.開發(fā)商為促進銷售,對價格進行了連續(xù)兩次下調,結果以每平方米14440元的均價開盤銷售,則平均每次下調的百分率為()A.5% B.8% C.10% D.11%4.用配方法解方程,下列配方正確的是()A. B. C. D.5.對于不為零的兩個實數(shù)a,b,如果規(guī)定a★b,那么函數(shù)的圖象大致是()A. B. C. D.6.下列說法中正確的是(
)A.弦是直徑 B.弧是半圓 C.半圓是圓中最長的弧 D.直徑是圓中最長的弦7.如圖,四邊形ABCD中,∠A=90°,AB=12,AD=5,點M、N分別為線段BC、AB上的動點(含端點,但點M不與點B重合),點E、F分別為DM、MN的中點,則EF長度的可能為()A.2 B.5 C.7 D.98.為了美化校園環(huán)境,加大校園綠化投資.某區(qū)前年用于綠化的投資為18萬元,今年用于綠化的投資為33萬元,設這兩年用于綠化投資的年平均增長率為x,則()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=339.關于的一元二次方程有兩個實數(shù)根,則的取值范圍是()A. B. C.且 D.且10.如圖,在的正方形網格中,每個小正方形的邊長都是,的頂點都在這些小正方形的頂點上,則的值為()A. B. C. D.11.關于的一元一次方程的解為,則的值為()A.5 B.4 C.3 D.212.已知等腰三角形ABC中,腰AB=8,底BC=5,則這個三角形的周長為()A.21 B.20 C.19 D.18二、填空題(每題4分,共24分)13.已知,P為等邊三角形ABC內一點,PA=3,PB=4,PC=5,則S△ABC=_____.14.如圖,在平面直角坐標系中,△ABC和△A′B′C′是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2),若點A′(5,6),則A的坐標為______.15.若是關于x的一元二次方程的解,則代數(shù)式的值是________.16.已知線段a=4,b=16,則a,b的比例中項線段的長是_______.17.已知的半徑點在內,則_________(填>或=,<)18.如圖,點B是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數(shù)y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.三、解答題(共78分)19.(8分)(1)解方程(2)計算:20.(8分)如圖,為了測得旗桿AB的高度,小明在D處用高為1m的測角儀CD,測得旗桿頂點A的仰角為45°,再向旗桿方向前進10m,又測得旗桿頂點A的仰角為60°,求旗桿AB的高度.21.(8分)如圖,在平面直角坐標系中,ΔABC的三個頂點坐標分別為A(-2,1)、B(-1,4)、C(-3,2).(1)畫圖:以原點為位似中心,位似比為1:2,在第二象限作出ΔABC的放大后的圖形(2)填空:點C1的坐標為,=.22.(10分)如圖,平面直角坐標系xOy中點A的坐標為(﹣1,1),點B的坐標為(3,3),拋物線經過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點E.(1)求點E的坐標;(2)求拋物線的函數(shù)解析式;(3)點F為線段OB上的一個動點(不與點O、B重合),直線EF與拋物線交于M、N兩點(點N在y軸右側),連接ON、BN,當四邊形ABNO的面積最大時,求點N的坐標并求出四邊形ABNO面積的最大值.23.(10分)點為圖形上任意一點,過點作直線垂足為,記的長度為.定義一:若存在最大值,則稱其為“圖形到直線的限距離”,記作;定義二:若存在最小值,則稱其為“圖形到直線的基距離”,記作;(1)已知直線,平面內反比例函數(shù)在第一象限內的圖象記作則.(2)已知直線,點,點是軸上一個動點,的半徑為,點在上,若求此時的取值范圍,(3)已知直線恒過定點,點恒在直線上,點是平面上一動點,記以點為頂點,原點為對角線交點的正方形為圖形,若請直接寫出的取值范圍.24.(10分)拋物線過點(0,-5)和(2,1).(1)求b,c的值;(2)當x為何值時,y有最大值?25.(12分)如圖,二次函數(shù)y=﹣2x2+x+m的圖象與x軸的一個交點為A(1,0),另一個交點為B,且與y軸交于點C.(1)求m的值;(2)求點B的坐標;(3)該二次函數(shù)圖象上是否有一點D(x,y)使S△ABD=S△ABC,求點D的坐標.26.[問題發(fā)現(xiàn)]如圖①,在中,點是的中點,點在邊上,與相交于點,若,則_____;[拓展提高]如圖②,在等邊三角形中,點是的中點,點在邊上,直線與相交于點,若,求的值.[解決問題]如圖③,在中,,點是的中點,點在直線上,直線與直線相交于點,.請直接寫出的長.
參考答案一、選擇題(每題4分,共48分)1、A【解析】解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.2、C【分析】圓錐的側面積就等于經母線長乘底面周長的一半.依此公式計算即可.【詳解】解:底面圓的半徑為3,則底面周長=6π,側面面積=×6π×4=12π,故選C.考點:圓錐的計算.3、A【分析】設平均每次下調的百分率為x,根據該樓盤的原價及經過兩次降價后的價格,即可得出關于x的一元二次方程,即可得出結果.【詳解】設平均每次下調的百分率為x,依題意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合題意,舍去),答:平均每次下調的百分率為5%.故選:A.【點睛】本題主要考查一元二次方程的實際應用,找出等量關系,列出關于x的方程,是解題的關鍵.4、A【分析】通過配方法可將方程化為的形式.【詳解】解:配方,得:,由此可得:,故選A.【點睛】本題重點考查解一元二次方程中的配方法,熟練掌握配方法的過程是解題的關鍵;注意當方程中二次項系數(shù)不為1時,要先將系數(shù)化為1后再進行移項和配方.5、C【分析】先根據所給新定義運算求出分段函數(shù)解析式,再根據函數(shù)解析式來判斷函數(shù)圖象即可.【詳解】解:∵a★b,∴∴當x>2時,函數(shù)圖象在第一象限且自變量的值不等于2,當x≤2時,是反比例函數(shù),函數(shù)圖象在二、四象限.故應選C.【點睛】本題考查了分段函數(shù)及其圖象,理解所給定義求出分段函數(shù)解析式是解題的關鍵.6、D【解析】試題分析:根據弦、直徑、弧、半圓的概念一一判斷即可.【解答】解:A、錯誤.弦不一定是直徑.B、錯誤.弧是圓上兩點間的部分.C、錯誤.優(yōu)弧大于半圓.D、正確.直徑是圓中最長的弦.故選D.【考點】圓的認識.7、B【分析】根據三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,N與A重合時,DN最小,從而求得EF的最大值為1.3,最小值是2.3,可解答.【詳解】解:連接DN,∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,DN最小時,EF最小,∵N與B重合時DN最大,此時DN=DB===13,∴EF的最大值為1.3.∵∠A=90,AD=3,∴DN≥3,∴EF≥2.3,∴EF長度的可能為3;故選:B.【點睛】本題考查了三角形中位線定理,勾股定理的應用,熟練掌握定理是解題的關鍵.8、C【解析】根據題意可以列出相應的一元二次方程,本題得以解決.【詳解】由題意可得,18(1+x)2=33,故選:C.【點睛】本題考查由實際問題抽象出一元二次方程,解答本題的關鍵是明確題意,列出相應的一元二次方程,這是一道典型的增長率問題.9、D【解析】分析:根據一元二次方程根的判別式進行計算即可.詳解:根據一元二次方程一元二次方程有兩個實數(shù)根,解得:,根據二次項系數(shù)可得:故選D.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.10、D【分析】過作于,首先根據勾股定理求出,然后在中即可求出的值.【詳解】如圖,過作于,則,AC==1..故選D.【點睛】本題考查了勾股定理的運用以及銳角三角函數(shù),正確作出輔助線是解題的關鍵.11、D【分析】滿足題意的有兩點,一是此方程為一元一次方程,即未知數(shù)x的次數(shù)為1;二是方程的解為x=1,即1使等式成立,根據兩點列式求解.【詳解】解:根據題意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故選:D.【點睛】本題考查一元一次方程的定義及方程解的定義,對定義的理解是解答此題的關鍵.12、A【解析】試題分析:由于等腰三角形的兩腰相等,題目給出了腰和底,根據周長的定義即可求解:∵8+8+5=1.∴這個三角形的周長為1.故選A.考點:等腰三角形的性質.二、填空題(每題4分,共24分)13、【分析】將△BPC繞點B逆時針旋轉60°得△BEA,根據旋轉的性質得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點F,根據勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在Rt△APF中利用三角函數(shù)求得AF和PF的長,則在Rt△ABF中利用勾股定理求得AB的長,進而求得三角形ABC的面積.【詳解】解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點B逆時針旋轉60°得△BEA,連EP,且延長BP,作AF⊥BP于點F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面積=AB2=(25+12)=;故答案為:.【點睛】本題考查了旋轉的性質:旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了等邊三角形的判定與性質以及勾股定理的逆定理.14、(2.5,3)【分析】利用點B(3,1),B′(6,2)即可得出位似比進而得出A的坐標.【詳解】解:∵點B(3,1),B′(6,2),點A′(5,6),∴A的坐標為:(2.5,3).故答案為:(2.5,3).【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.15、1【分析】把x=2代入已知方程求得2a+b的值,然后將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵關于x的一元二次方程的解是x=2,∴4a+2b-8=0,則2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【點睛】本題考查了一元二次方程的解定義,以及求代數(shù)式的值,解題時,利用了“整體代入”的數(shù)學思想.16、1【分析】設線段a,b的比例中項為c,根據比例中項的定義可得c2=ab,代入數(shù)據可直接求出c的值,注意兩條線段的比例中項為正數(shù).【詳解】解:設線段a,b的比例中項為c,∵c是長度分別為4、16的兩條線段的比例中項,∴c2=ab=4×16,∴c2=64,∴c=1或-1(負數(shù)舍去),∴a、b的比例中項為1;故答案為:1.【點睛】本題主要考查了比例線段.掌握比例中項的定義,是解題的關鍵.17、<【分析】根據點與圓的位置關系,即可求解.【詳解】解:的半徑為點在內,.故答案為:.【點睛】本題考查的是點與圓的位置關系.18、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于設A的縱坐標為b三、解答題(共78分)19、(1),;(2)【分析】(1)利用配方法解一元二次方程即可得出答案;(2)先將sin45°和tan60°的值代入,再計算即可得出答案.【詳解】解:(1)方程整理得:,配方得:,即,開方得:,解得:,;(2)原式.【點睛】本題考查的是解一元二次方程和三角函數(shù)值,比較簡單,需要牢記特殊三角函數(shù)值.20、(16+5)米.【詳解】設AG=x.在Rt△AFG中,∵tan∠AFG=,∴FG=,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x﹣=10,解得:x=15+5,∴AB=15+5+1=16+5(米).答:電視塔的高度AB約為(16+5)米.考點:解直角三角形的應用﹣仰角俯角問題.21、(1)見解析;(2)(-6,4),2【分析】(1)利用位似比為1:2,進而將各對應點坐標擴大為原來的2倍,進而得出答案;(2)利用(1)中位似比得出對應點坐標.【詳解】(1)如圖所示:△A1B1C1即為所求;(2)∵C點坐標為(-3,2),∴C1點坐標為(-6,4);∵,,,∵,,∴,∴是直角三角形,且,∴.【點睛】本題主要考查了位似變換和銳角三角函數(shù)的知識,正確掌握位似比與坐標的關系是解題關鍵.22、(1)E點坐標為(0,);(2);(3)四邊形ABNO面積的最大值為,此時N點坐標為(,).【分析】(1)先利用待定系數(shù)法求直線AB的解析式,與y軸的交點即為點E;(2)利用待定系數(shù)法拋物線的函數(shù)解析式;(3)先設N(m,m2?m)(0<m<3),則G(m,m),根據面積和表示四邊形ABNO的面積,利用二次函數(shù)的最大值可得結論.【詳解】(1)設直線AB的解析式為y=mx+n,把A(-1,1),B(3,3)代入得,解得,所以直線AB的解析式為y=x+,當x=0時,y=×0+=,所以E點坐標為(0,);(2)設拋物線解析式為y=ax2+bx+c,把A(-1,1),B(3,3),O(0,0)代入得,解得,所以拋物線解析式為y=x2?x;(3)如圖,作NG∥y軸交OB于G,OB的解析式為y=x,設N(m,m2?m)(0<m<3),則G(m,m),GN=m?(m2?m)=?m2+m,S△AOB=S△AOE+S△BOE=××1+××3=3,S△BON=S△ONG+SBNG=?3?(?m2+m)=?m2+m所以S四邊形ABNO=S△BON+S△AOB=?m2+m+3=?(m?)2+當m=時,四邊形ABNO面積的最大值,最大值為,此時N點坐標為(,).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質;會利用待定系數(shù)法求二次函數(shù)和一次函數(shù)的性質;理解坐標與圖形性質,利用面積的和差計算不規(guī)則圖形的面積.23、(1);(2)或;(3)或【分析】(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,根據只有一個交點可求出b,再聯(lián)立求出P的坐標,從而判斷出PQ平分∠AOB,再利用直線表達式求A、B坐標證明OA=OB,從而證出PQ即為最小距離,最后利用勾股定理計算即可;(2)過點作直線,可判斷出上的點到直線的最大距離為,然后根據最大距離的范圍求出TH的范圍,從而得到FT的范圍,根據范圍建立不等式組求解即可;(3)把點P坐標帶入表達式,化簡得到關于a、b的等式,從而推出直線的表達式,根據點E的坐標可確定點E所在直線表達式,再根據最小距離為0,推出直線一定與圖形K相交,從而分兩種情況畫圖求解即可.【詳解】解:(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,∵直線:與H相交于點P,∴,即,只有一個解,∴,解得,∴,聯(lián)立,解得,即,∴,且點P在第一、三象限夾角的角平分線上,即PQ平分∠AOB,∴為等腰直角三角形,且OP=2,∵直線:,∴當時,,當時,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即為H上的點到直線的最小距離,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,則OQ=,∴,即;(2)由題過點作直線,則上的點到直線的最大距離為,∵,即,∴,由題,則,∴,又∵,∴,解得或;(3)∵直線恒過定點,∴把點P代入得:,整理得:,∴,化簡得,∴,又∵點恒在直線上,∴直線的表達式為:,∵,∴直線一定與以點為頂點,原點為對角線交點的正方形圖形相交,∵,∴點E一定在直線上運動,情形一:如圖,當點E運動到所對頂點F在直線上時,由題可知E、F關于原點對稱,∵,∴,把點F代入得:,解得:,∵當點E沿直線向上運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向下運動,即;情形二:如圖,當點E運動到直線上時,把點E代入得:,解得:,∵當點E沿直線向下運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向上運動,即,綜上所述,或.【點睛】本題考查新型定義題,弄清題目含義,正確畫出圖形是解題的關鍵.24、(1)b,c的值分別為5,-5;(2)當時有最大值【分析】(1)把點代入求解即可得到b,c的值;(2)代入二次函數(shù)一般式中頂點坐標的橫坐標求解公式進行求解即可.【詳解】解:(1)∵拋物線過點(0,-5)和(2,1),∴,解得,∴b,c的值分別為5,-5.(2)a=-1,b=5,∴當x=時y有最大值.【點睛】本題考查了利用待定系數(shù)法求解析式,熟記二次函數(shù)的圖象和性質是解題的關鍵.25、(1)1;(2)B(﹣,0);(3)D的坐標是(,1)或(,﹣1)或(,﹣1)【分析】(1)把點A的坐標代入函數(shù)解析式,利用方程來求m的值;(2)令y=0,則通過解方程來求點B的橫坐標;(3)利用三角形的面積公式進行解答.【詳解】解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,拋物線的解析式為y=﹣2x2+x+1.令y=0,則﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故該拋物線與x軸的交點是(﹣,0)和(1,0).∵點為A(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東北電力大學《韓國文學作品》2023-2024學年第一學期期末試卷
- 中國藥科大學《市場營銷案例分析》2023-2024學年第二學期期末試卷
- 山東省濱州市卓越重點中學2025屆初三下學期第二次模擬考化學試題試卷含解析
- 2024-2025學年西藏林芝第一中學高三5月半月考物理試題含解析
- 遼寧對外經貿學院《應急救護》2023-2024學年第二學期期末試卷
- 西南大學附中2025年高三第二次教學質量檢查生物試題含解析
- 云南警官學院《精神醫(yī)學實驗技術》2023-2024學年第一學期期末試卷
- 福建對外經濟貿易職業(yè)技術學院《建筑施工(實驗)》2023-2024學年第二學期期末試卷
- 四川省宜賓市南溪區(qū)市級名校2024-2025學年初三5月模擬(三模)英語試題理試題含答案
- 廣州民航職業(yè)技術學院《影視照明》2023-2024學年第二學期期末試卷
- 書法的章法布局(完整版)
- 最全的冷軋知識材質牌號分類及生產工藝
- 易制毒、易制爆化學品安全培訓
- 美女金喜善寫真集
- 入伍簡歷當兵簡歷.doc
- 國家旅游局新版團隊出境旅游合同模板
- 4S店三表一卡標準模板
- 南京地鐵四號線風井主體結構施工方案
- 高中生物競賽 第九章 染色體畸變課件
- 四年級下冊《小數(shù)的意義和性質》整理和復習
- 土壤污染修復技術對比分析
評論
0/150
提交評論