江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省蘇州昆山市石牌中學(xué)2025屆九上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.⊙O的半徑為4,點P到圓心O的距離為d,如果點P在圓內(nèi),則d()A. B. C. D.2.在下面四個選項的圖形中,不能由如圖圖形經(jīng)過旋轉(zhuǎn)或平移得到的是()A. B. C. D.3.如果一個扇形的半徑是1,弧長是,那么此扇形的圓心角的大小為()A.30° B.45°C.60° C.90°4.如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1,A2,…An分別是正方形的中心,則這n個正方形重疊部分的面積之和是()A.n B.n-1 C.()n-1 D.n5.下列計算錯誤的是()A. B. C. D.6.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<28.如圖,已知是的直徑,,則的度數(shù)為()A. B. C. D.9.如圖,這是二次函數(shù)的圖象,則的值等于()A. B. C. D.10.如圖,直線////,若AB=6,BC=9,EF=6,則DE=()A.4 B.6 C.7 D.911.3的倒數(shù)是()A. B. C. D.12.如圖,在△ABC中,點D在邊AB上,且AD=5cm,DB=3cm,過點D作DE∥BC,交邊AC于點E,將△ADE沿著DE折疊,得△MDE,與邊BC分別交于點F,G.若△ABC的面積為32cm2,則四邊形DEGF的面積是()A.10cm2 B.10.5cm2 C.12cm2 D.12.5cm2二、填空題(每題4分,共24分)13.小明和小亮在玩“石頭、剪子、布”的游戲,兩人一起做同樣手勢的概率是_____________.14.如圖,在平面直角坐標系中,為線段上任一點,作交線段于,當?shù)拈L最大時,點的坐標為_________.15.用長的鐵絲做一個長方形框架,設(shè)長方形的長為,面積為,則關(guān)于的函數(shù)關(guān)系式為__________.16.有四條線段,分別為3,4,5,6,從中任取三條,能夠成直角三角形的概率是17.如圖,菱形的邊長為4,,E為的中點,在對角線上存在一點,使的周長最小,則的周長的最小值為__________.18.如圖,已知AB是半圓O的直徑,∠BAC=20°,D是弧AC上任意一點,則∠D的度數(shù)是_________.三、解答題(共78分)19.(8分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.20.(8分)如圖,學(xué)校準備在教學(xué)樓后面搭建一個簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19m),另外三邊利用學(xué)?,F(xiàn)有總長38m的鐵欄圍成.(1)若圍成的面積為180m2,試求出自行車車棚的長和寬;(2)能圍成面積為200m2的自行車車棚嗎?如果能,請你給出設(shè)計方,如果不能,請說明理由.21.(8分)如圖,二次函數(shù)(其中)的圖象與x軸分別交于點A、B(點A位于B的左側(cè)),與y軸交于點C,過點C作x軸的平行線CD交二次函數(shù)圖像于點D.(1)當m2時,求A、B兩點的坐標;(2)過點A作射線AE交二次函數(shù)的圖像于點E,使得BAEDAB.求點E的坐標(用含m的式子表示);(3)在第(2)問的條件下,二次函數(shù)的頂點為F,過點C、F作直線與x軸于點G,試求出GF、AD、AE的長度為三邊長的三角形的面積(用含m的式子表示).22.(10分)從﹣1,﹣3,2,4四個數(shù)字中任取一個,作為點的橫坐標,不放回,再從中取一個數(shù)作為點的縱坐標,組成一個點的坐標.請用畫樹狀圖或列表的方法列出所有可能的結(jié)果,并求該點在第二象限的概率.23.(10分)如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣2,0),B(4,0)兩點,與y軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標為m(1<m<4)連接BC,DB,DC.(1)求拋物線的函數(shù)解析式;(2)△BCD的面積是否存在最大值,若存在,求此時點D的坐標;若不存在,說明理由;(3)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.24.(10分)如圖,已知直線與軸交于點,與軸交于點,拋物線經(jīng)過、兩點并與軸的另一個交點為,且.(1)求拋物線的解析式;(2)點為直線上方對稱軸右側(cè)拋物線上一點,當?shù)拿娣e為時,求點的坐標;(3)在(2)的條件下,連接,作軸于,連接、,點為線段上一點,點為線段上一點,滿足,過點作交軸于點,連接,當時,求的長.25.(12分)從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.26.某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:(1)求y與x的函數(shù)解析式(也稱關(guān)系式);(2)求這一天銷售西瓜獲得的利潤的最大值.

參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)點與圓的位置關(guān)系判斷得出即可.【詳解】∵點P在圓內(nèi),且⊙O的半徑為4,

∴0≤d<4,

故選D.【點睛】本題考查了點與圓的位置關(guān)系,點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r.2、C【分析】由題圖圖形,旋轉(zhuǎn)或平移,分別判斷、解答即可.【詳解】A、由圖形順時針旋轉(zhuǎn)90°,可得出;故本選項不符合題意;

B、由圖形逆時針旋轉(zhuǎn)90°,可得出;故本選項不符合題意;

C、不能由如圖圖形經(jīng)過旋轉(zhuǎn)或平移得到;故本選項符合題意;

D、由圖形順時針旋轉(zhuǎn)180°,而得出;故本選項不符合題意;

故選:C.【點睛】本題考查了旋轉(zhuǎn),旋轉(zhuǎn)是圍繞一點旋轉(zhuǎn)一定的角度的圖形變換,因而旋轉(zhuǎn)一定有旋轉(zhuǎn)中心和旋轉(zhuǎn)角,且旋轉(zhuǎn)前后圖形能夠重合,這時判斷旋轉(zhuǎn)的關(guān)鍵.3、C【分析】根據(jù)弧長公式,即可求解【詳解】設(shè)圓心角是n度,根據(jù)題意得,解得:n=1.故選C【點睛】本題考查了弧長的有關(guān)計算.4、B【分析】過中心作陰影另外兩邊的垂線可構(gòu)建兩個全等三角形(ASA),由此可知陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和,即可求解.【詳解】如圖作正方形邊的垂線,由ASA可知同正方形中兩三角形全等,利用割補法可知一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故選:B.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì).解題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.5、A【分析】根據(jù)算術(shù)平方根依次化簡各選項即可判斷.【詳解】A:,故A錯誤,符合題意;B:正確,故B不符合題意;C:正確,故C不符合題意;D:正確,故D不符合題意.故選:A.【點睛】此題考查算術(shù)平方根,依據(jù),進行判斷.6、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,是中心對稱圖形,故此選項正確;

B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

C、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、C【解析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應(yīng)的自變量的取值范圍即為所求.【詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關(guān)鍵.8、B【分析】根據(jù)同弧所對的圓周角相等可得∠E=∠B=40°,再根據(jù)直徑所對的圓周角是直角得到∠ACE=90°,最后根據(jù)直角三角形兩銳角互余可得結(jié)論.【詳解】∵在⊙O中,∠E與∠B所對的弧是,∴∠E=∠B=40°,∵AE是⊙O的直徑,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故選:B.【點睛】此題主要考查了圓周角定理以及直徑所對的圓周角是直角和直角三角形兩銳角互余等知識,求出∠E=40°,是解此題的關(guān)鍵.9、D【分析】由題意根據(jù)二次函數(shù)圖象上點的坐標特征,把原點坐標代入解析式得到=0,然后解關(guān)于a的方程即可.【詳解】解:因為二次函數(shù)圖象過原點,所以把(0,0)代入二次函數(shù)得出=0,解得或,又因為二次函數(shù)圖象開口向下,所以.故選:D.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,根據(jù)二次函數(shù)圖象上點的坐標滿足其解析式進行分析作答即可.10、A【分析】根據(jù)平行線分線段成比例定理列出比例式,代入數(shù)值進行計算即可.【詳解】解:∵////,∴,∵AB=6,BC=9,EF=6,∴,∴DE=4故選:A【點睛】本題考查平行線分線段成比例定理,找準對應(yīng)關(guān)系是解答此題的關(guān)鍵.11、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).12、B【分析】根據(jù)相似多邊形的性質(zhì)進行計算即可;【詳解】∵DE∥BC,∴,,又由折疊知,∴,∴DB=DF,∵,,∴,即,∴,∴,同理可得:,∴四邊形DEGF的面積.故答案選B.【點睛】本題主要考查了相似多邊形的性質(zhì),準確計算是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出兩人隨機同時出手一次,做同樣手勢的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:

共有9種等可能的結(jié)果數(shù),其中兩人隨機同時出手一次,做同樣手勢的結(jié)果數(shù)為3,

故兩人一起做同樣手勢的概率是的概率為.故答案為:.【點睛】本題涉及列表法和樹狀圖法以及相關(guān)概率知識,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.14、(3,)【分析】根據(jù)勾股定理求出AB,由DE⊥BD,取BE的中點F,以點F為圓心,BF長為半徑作半圓,與x軸相切于點D,連接FD,設(shè)AE=x,利用相似三角形求出x,再根據(jù)三角形相似求出點E的橫縱坐標即可.【詳解】∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∵DE⊥BD,∴∠BDE=90°,取BE的中點F,以點F為圓心,BF長為半徑作半圓,與x軸相切于點D,連接FD,設(shè)AE=x,則BF=EF=DF=,∵∠ADF=∠AOB=90°,∴DF∥OB∴△ADF∽△AOB∴∴,解得x=,過點E作EG⊥x軸,∴EG∥OB,∴△AEG∽△ABO,∴,∴,∴EG=,AG=1,∴OG=OA-AG=4-1=3,∴E(3,),故答案為:(3,).【點睛】此題考查圓周角定理,相似三角形的判定及性質(zhì),勾股定理,本題借助半圓解題使題中的DE⊥BD所成的角確定為圓周角,更容易理解,是解此題的關(guān)鍵.15、或【分析】易得矩形另一邊長為周長的一半減去已知邊長,那么矩形的面積等于相鄰兩邊長的積.【詳解】由題意得:矩形的另一邊長=24÷2?x=12?x,則y=x(12?x)=?x2+12x.故答案為或【點睛】本題考查了二次函數(shù)的應(yīng)用,掌握矩形周長與面積的關(guān)系是解題的關(guān)鍵.16、.【解析】試題分析:能構(gòu)成三角形的情況為:3,4,5;3,4,6;3,5,6;4,5,6這四種情況.直角三角形只有3,4,5一種情況.故能夠成直角三角形的概率是.故答案為.考點:1.勾股定理的逆定理;2.概率公式.17、+2【分析】連接DE,因為BE的長度固定,所以要使△PBE的周長最小,只需要PB+PE的長度最小即可.【詳解】解:連結(jié)DE.∵BE的長度固定,∴要使△PBE的周長最小只需要PB+PE的長度最小即可,∵四邊形ABCD是菱形,∴AC與BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小長度為DE的長,∵菱形ABCD的邊長為4,E為BC的中點,∠DAB=60°,∴△BCD是等邊三角形,又∵菱形ABCD的邊長為4,∴BD=4,BE=2,DE=,∴△PBE的最小周長=DE+BE=,故答案為:.【點睛】本題考查了菱形的性質(zhì)、軸對稱以及最短路線問題、直角三角形斜邊上的中線性質(zhì);熟練掌握菱形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.18、110°【解析】試題解析:∵AB是半圓O的直徑故答案為點睛:圓內(nèi)接四邊形的對角互補.三、解答題(共78分)19、(1)證明見解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函數(shù)的性質(zhì)找出拋物線的頂點坐標,將x=h代入一次函數(shù)解析式中可得出點(h,2)在直線1上,進而可證出直線l恒過拋物線C1的頂點;(2)由a>0可得出當x=h=1時y1=a(x﹣h)2+2取得最小值2,結(jié)合當t≤x≤t+3時二次函數(shù)y1=a(x﹣h)2+2的最小值為2,可得出關(guān)于t的一元一次不等式組,解之即可得出結(jié)論;(3)令y1=y(tǒng)2可得出關(guān)于x的一元二次方程,解之可求出點P,Q的橫坐標,由線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,可得出>1或<﹣1,再結(jié)合1≤k≤3,即可求出a的取值范圍.【詳解】(1)∵拋物線C1的解析式為y1=a(x﹣h)2+2,∴拋物線的頂點為(h,2),當x=h時,y2=kx﹣kh+2=2,∴直線l恒過拋物線C1的頂點;(2)∵a>0,h=1,∴當x=1時,y1=a(x﹣h)2+2取得最小值2,又∵當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,∴,∴﹣2≤t≤1;(3)令y1=y(tǒng)2,則a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【點睛】本題考查了二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征、二次函數(shù)的最值、解一元二次方程以及解不等式,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)及一次函數(shù)圖象上點的坐標特征,證出直線l恒過拋物線C的頂點;(2)利用二次函數(shù)的性質(zhì)結(jié)合二次函數(shù)的最值,找出關(guān)于t的一元一次不等式組;(3)令y1=y(tǒng)2,求出點P,Q的橫坐標.20、(1)長和寬分別為18m,10m;(2)不能,理由見解析【分析】(1)利用長方形的周長表示出各邊長,即可表示出矩形面積,求出即可;(2)利用長方形的面積列方程,利用根的判別式解答即可.【詳解】解:(1)設(shè)AB=x,則BC=38-2x.根據(jù)題意,得x(38-2x)=180,解得x1=10,x2=9.當x=10時,38-2x=18;當x=9時,38-2x=20>19,不符合題意,舍去.答:若圍成的面積為180m2,自行車車棚的長和寬分別為18m,10m.(2)不能,理由如下:根據(jù)題意,得x(38-2x)=200,整理,得x2-19x+100=0.∵Δ=b2-4ac=361-400=-39<0,∴此方程沒有實數(shù)根.∴不能圍成面積為200m2的自行車車棚.【點睛】本題考查一元二次方程的應(yīng)用,熟練掌握計算法則是解題關(guān)鍵.21、(1),;(2);(3)【分析】(1)求圖象與x軸交點,即函數(shù)y值為零,解一元二次方程即可;(2)過作軸,過作軸,先求出D點坐標為,設(shè)E點為,即可列等式求m的值得E點坐標;(3)由直線的方程:,得G點坐標,再用m的表達式分別表達GF、AD、AE即可.【詳解】(1)當時,,∵圖象與x軸分別交于點A、B∴時,∴,(2)∵,軸∴過作軸,過作軸∵∴設(shè)E∴(3)以GF、BD、BE的長度為三邊長的三角形是直角三角形.理由如下:二次函數(shù)的頂點為F,則F的坐標為(?m,4),過點F作FH⊥x軸于點H.∵tan∠CGO=,tan∠FGH=,∴=,∴=,∵OC=3,HF=4,OH=m,∴,∴OG=3m.∴,∴∴、、能構(gòu)成直角三角形面積是所以、、能構(gòu)成直角三角形面積是【點睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于掌握二次函數(shù)圖象的問題轉(zhuǎn)換.22、表見解析,【分析】列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再利用概率公式求解可得.【詳解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣所有等可能的情況有12種,其中點(x,y)落在第二象限內(nèi)的情況有4種,∴該點在第二象限的概率為=.【點睛】本題主要考查了列表法或樹狀圖法求概率,熟練的用列表法或樹狀圖法列出所有的情況數(shù)是解題的關(guān)鍵.23、(1);(2)存在,D的坐標為(2,6);(3)存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,點M的坐標為:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根據(jù)點,利用待定系數(shù)法求解即可;(2)先根據(jù)函數(shù)解析式求出點C、D坐標,再將過點D作y軸的平行線交BC于點E,利用待定系數(shù)法求出直線BC的函數(shù)解析式,從而得出點E坐標,然后根據(jù)得出的面積表達式,最后利用二次函數(shù)的性質(zhì)求出的面積取最大值時m的值,從而可得點D坐標;(3)根據(jù)平行四邊形的定義分兩種情況:BD為平行四邊形的邊和BD為平行四邊形的對角線,然后先分別根據(jù)平行四邊形的性質(zhì)求出點N坐標,從而即可求出點M坐標.【詳解】(1)∵拋物線經(jīng)過點∴解得故拋物線的解析式為;(2)的面積存在最大值.求解過程如下:,當時,由題意,設(shè)點D坐標為,其中如圖1,過點D作y軸的平行線交BC于點E設(shè)直線BC的解析式為把點代入得解得∴直線BC的解析式為∴可設(shè)點E的坐標為由二次函數(shù)的性質(zhì)可知:當時,隨m的增大而增大;當時,隨m的增大而減小則當時,取得最大值,最大值為6此時,故的面積存在最大值,此時點D坐標為;(3)存在.理由如下:由平行四邊形的定義,分以下兩種情況討論:①當BD是平行四邊形的一條邊時如圖2所示:M、N分別有三個點設(shè)點∴點N的縱坐標為絕對值為6即解得(與點D重合,舍去)或或則點的橫坐標分別為∴點M坐標為或或即點M坐標為或或②如圖3,當BD是平行四邊形的對角線時∴此時,點N與C重合,,且點M在點B右側(cè),即綜上,存在這樣的點M,使得以點為頂點的四邊形是平行四邊形.點M坐標為或或或.【點睛】本題考查了利用待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、平行四邊形的定義與性質(zhì)等知識點,較難的是題(3),依據(jù)平行四邊形的定義,正確分兩種情況討論是解題關(guān)鍵.24、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐標,把A、B的坐標代入拋物線解析式,解方程組即可得出結(jié)論;(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.根據(jù)計算即可;(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①點E在F的左邊;②點E在F的右邊.【詳解】(3)當x=0時y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).當y=0時x=4,∴B(4,0).把A、B坐標代入得解得:,∴拋物線的解析式為.(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①當點E在F的左邊時,如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②當點E在F的右邊時,設(shè)AM交QE于N.如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.綜上所述:CP的值為3或.【點睛】本題是二次函數(shù)的綜合題目,涉及了相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì),解答本題需要我們熟練各個知識點的內(nèi)容,注意要分類討論.25、(1)甲平均數(shù)301,乙平均數(shù)301,甲方差3.2,乙方差4.2;(2)甲包裝機包裝質(zhì)量的穩(wěn)定性好,見解析【分析】(1)根據(jù)平均數(shù)就是對每組數(shù)求和后除以數(shù)的個數(shù);根據(jù)方差公式計算即可;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論