2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷含解析_第1頁
2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷含解析_第2頁
2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷含解析_第3頁
2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷含解析_第4頁
2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆遼寧省大連市新民間聯(lián)盟中考猜題數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④2.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.3.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形4.實數(shù)a,b在數(shù)軸上對應的點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.5.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°6.自2013年10月總書記提出“精準扶貧”的重要思想以來.各地積極推進精準扶貧,加大幫扶力度.全國脫貧人口數(shù)不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學記數(shù)法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人7.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確8.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.9.下列分式中,最簡分式是()A. B. C. D.10.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.11.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.12.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是26二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當MN=1時,PM的長是_____.14.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°15.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.16.請寫出一個一次函數(shù)的解析式,滿足過點(1,0),且y隨x的增大而減小_____.17.函數(shù)y=中,自變量x的取值范圍是________.18.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校為表彰在“書香校園”活動中表現(xiàn)積極的同學,決定購買筆記本和鋼筆作為獎品.已知5個筆記本、2支鋼筆共需要100元;4個筆記本、7支鋼筆共需要161元(1)筆記本和鋼筆的單價各多少元?(2)恰好“五一”,商店舉行“優(yōu)惠促銷”活動,具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買x個筆記本需要y1元,買x支鋼筆需要y2元;求y1、y2關(guān)于x的函數(shù)解析式;(3)若購買同一種獎品,并且該獎品的數(shù)量超過10件,請你分析買哪種獎品省錢.20.(6分)已知:如圖所示,在中,,,求和的度數(shù).21.(6分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數(shù)表達式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.22.(8分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.23.(8分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.24.(10分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調(diào)查結(jié)果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.25.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.26.(12分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.27.(12分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【點睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關(guān)鍵.2、C【解析】

根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.3、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.4、D【解析】

根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運算是解題關(guān)鍵.5、C【解析】

根據(jù)題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.6、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關(guān)鍵.8、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】解:由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)與扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)與扇形面積的計算.9、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.10、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.11、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.12、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項錯誤;B、因為共有5組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項錯誤;C、平均數(shù)==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

設PM=x,根據(jù)黃金分割的概念列出比例式,計算即可.【詳解】設PM=x,則PN=1-x,

由得,,

化簡得:x2+x-1=0,

解得:x1=,x2=(負值舍去),

所以PM的長為.【點睛】本題考查的是黃金分割的概念和性質(zhì),把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.14、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.15、【解析】

根據(jù)矩形的性質(zhì)得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長,再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質(zhì)可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),由折疊得到BF的長度是解題的關(guān)鍵.16、y=﹣x+1【解析】

根據(jù)題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數(shù)y隨x的增大而減小,∴k<0,∵一次函數(shù)的解析式,過點(1,0),∴滿足條件的一個函數(shù)解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,寫出符合要求的函數(shù)解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.17、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.18、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)筆記本單價為14元,鋼筆單價為15元;(2)y1=14×0.9x=12.6x,y2=15x0≤x≤10【解析】(1)設每個文具盒z元,每支鋼筆y元,可列方程組得5z+2y=100,4z+7y=161.解之得答:每個文具盒14元,每支鋼筆15元.(2)由題意知,y1關(guān)于x的函數(shù)關(guān)系式是y1=14×90%x,即y1=12.6x.買鋼筆10支以下(含10支)沒有優(yōu)惠.故此時的函數(shù)關(guān)系式為y2=15x:當買10支以上時,超出的部分有優(yōu)惠,故此時的函數(shù)關(guān)系式為y2=15×10+15×80%(x-10),即y2=12x+1.(3)因為x>10,所以y2=12x+1.當y1<y2,即12.6x<12x+1時,解得x<2;當y1=y(tǒng)2,即12.6x=12x+1時,解得x=2;當y1>y2,即12.6x>12x+1時,解得x>2.綜上所述,當購買獎品超過10件但少于2件時,買文具盒省錢;當購買獎品2件時,買文具盒和買鋼筆錢數(shù)相等;當購買獎品超過2件時,買鋼筆省錢.20、,.【解析】

根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知等邊對等角.21、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當y=1時,﹣x+13=1,則P(24,1)當x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、角平分線的性質(zhì)和三角形內(nèi)心的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì)是解題的關(guān)鍵.22、(2)(2)7或2.【解析】試題分析:(2)根據(jù)反比例函數(shù)k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數(shù)解析式為y=;(2)分類討論:當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數(shù)圖象上點的坐標特征確定M點坐標為(2,6),則AB=AM=6,所以t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,根據(jù)正方形的性質(zhì)得AB=BC=t-2,則C點坐標為(t,t-2),然后利用反比例函數(shù)圖象上點的坐標特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數(shù)解析式為y=;(2)當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標為(2,6),∴AB=AM=6,∴t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,則AB=BC=t-2,∴C點坐標為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數(shù)y=的圖象上時,t的值為7或2.考點:反比例函數(shù)綜合題.23、證明見解析【解析】分析:根據(jù)平行四邊形的性質(zhì)以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又

,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質(zhì)以及判定定理,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是根據(jù)平行四邊形的性質(zhì)得出四邊形AHCG為平行四邊形.24、(1)120,54;(2)補圖見解析;(3)660名;(4).【解析】

(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用360°乘以樣本中電話人數(shù)所占比例;(2)先計算出喜歡使用短信的人數(shù),然后補全條形統(tǒng)計圖;(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學生所占的百分比即可;(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出甲乙兩名同學恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)這次統(tǒng)計共抽查學生24÷20%=120(人),其中最喜歡用電話溝通的所對應扇形的圓心角是360°×=54°,故答案為120、54;(2)喜歡使用短信的人數(shù)為120﹣18﹣24﹣66﹣2=10(人),條形統(tǒng)計圖為:(3)1200×=660,所以估計1200名學生中最喜歡用QQ進行溝通的學生有660名;(4)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),甲乙兩名同學恰好選中同一種溝通方式的結(jié)果數(shù)為3,所以甲乙兩名同學恰好選中同一種溝通方式的概率.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖和用樣本估計總體.25、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論