陜西省寶雞市眉縣2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
陜西省寶雞市眉縣2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
陜西省寶雞市眉縣2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
陜西省寶雞市眉縣2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
陜西省寶雞市眉縣2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.2.已知,,則()A. B. C. D.3.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.4.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.35.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.46.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設(shè)為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或7.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.8.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.9.已知實數(shù),則下列說法正確的是()A. B.C. D.10.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.12.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.若,則的最小值為________.15.四面體中,底面,,,則四面體的外接球的表面積為______16.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)根據(jù)國家統(tǒng)計局?jǐn)?shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數(shù)據(jù):45678的近似值551484031097298118.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點坐標(biāo)為,圓與直線交于兩點,求的值.20.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.21.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.22.(10分)某商場為改進服務(wù)質(zhì)量,隨機抽取了200名進場購物的顧客進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學(xué)期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.2、D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.3、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.4、B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標(biāo)之間的關(guān)系,考查計算能力,屬于中檔題.5、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.6、D【解析】

設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運算求解能力,屬于中檔題.7、D【解析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.8、C【解析】

根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.9、C【解析】

利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.10、B【解析】

直接利用向量的坐標(biāo)運算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標(biāo)運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.11、D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.12、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)向量加法和減法的坐標(biāo)運算,先分別求得與,再結(jié)合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標(biāo)加法和減法的運算,向量模長的求法,屬于基礎(chǔ)題.14、【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時等號成立,所以,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。15、【解析】

由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關(guān)鍵,屬于中檔題.16、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)148萬億元.【解析】

(1)由散點圖知更適宜,對兩邊取自然對數(shù)得,令,,,則,再利用線性回歸方程的計算公式計算即可;(2)將代入所求的回歸方程中計算即可.【詳解】(1)根據(jù)數(shù)據(jù)及圖表可以判斷,更適宜作為全國GDP總量關(guān)于的回歸方程.對兩邊取自然對數(shù)得,令,,,得.因為,所以,所以關(guān)于的線性回歸方程為,所以關(guān)于的回歸方程為.(2)將代入,其中,于是2020年的全國GDP總量約為:萬億元.【點睛】本題考查非線性回歸方程的應(yīng)用,在處理非線性回歸方程時,先作變換,轉(zhuǎn)化成線性回歸直線方程來處理,是一道中檔題.18、(1),(2)【解析】

(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.19、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.20、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑涸鰠^(qū)間為,當(dāng),得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因為,所以設(shè),令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.21、(1)曲線的普通方程為;直線的直角坐標(biāo)方程為(2)【解析】

(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)(1)求出曲線的極坐標(biāo)方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標(biāo)方程,求出和,即可求出.【詳解】解:(1)因為(為參數(shù)),所以消去參數(shù),得,所以曲線的普通方程為.因為所以直線的直角坐標(biāo)方程為.(2)曲線的極坐標(biāo)方程為.設(shè)的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數(shù)方程化成普通方程以及利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,還考查極徑的運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論