2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題含解析_第1頁
2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題含解析_第2頁
2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題含解析_第3頁
2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題含解析_第4頁
2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年廣東省東莞市中學堂六校中考數(shù)學模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=902.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20183.下列立體圖形中,主視圖是三角形的是()A. B. C. D.4.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲5.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是6.下列各式中計算正確的是A. B. C. D.7.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-38.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.9.下列運算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a10.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.11.小穎隨機抽樣調(diào)查本校20名女同學所穿運動鞋尺碼,并統(tǒng)計如表:尺碼/cm21.522.022.523.023.5人數(shù)24383學校附近的商店經(jīng)理根據(jù)統(tǒng)計表決定本月多進尺碼為23.0cm的女式運動鞋,商店經(jīng)理的這一決定應(yīng)用的統(tǒng)計量是()A.平均數(shù) B.加權(quán)平均數(shù) C.眾數(shù) D.中位數(shù)12.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于二次函數(shù)y=x2﹣4x+4,當自變量x滿足a≤x≤3時,函數(shù)值y的取值范圍為0≤y≤1,則a的取值范圍為__.14.如圖,在△ABC中,AD、BE分別是BC、AC兩邊中線,則=_____.15.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內(nèi)壁離杯底4cm的點B處有乙滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對的點A處,則螞蟻從外幣A處到達內(nèi)壁B處的最短距離為_______.16.分解因式:x2y﹣2xy2+y3=_____.17.如圖,平行線AB、CD被直線EF所截,若∠2=130°,則∠1=_____.18.計算:+(|﹣3|)0=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡再求值:,其中,.20.(6分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點B(4,0),且過點P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過拋物線頂點的兩條互相垂直的直線,與拋物線分別交于A、B兩點,求證:直線AB恒經(jīng)過定點(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(A在B左邊),頂點為C,點P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.21.(6分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為xm設(shè)垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.22.(8分)九(1)班針對“你最喜愛的課外活動項目”對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.根據(jù)以上信息解決下列問題:,;扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為°;從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.23.(8分)現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數(shù)y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.24.(10分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.25.(10分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.26.(12分)在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.如圖1,當t=3時,求DF的長.如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結(jié)AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.27.(12分)重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是度,并補全條形統(tǒng)計圖;經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在??希埨卯嫎錉顖D或列表的方法求出七年級特等獎作文被選登在??系母怕剩?/p>

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:設(shè)某種書包原價每個x元,根據(jù)題意列出方程解答即可.設(shè)某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.2、A【解析】

根據(jù)去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質(zhì)、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關(guān)鍵.3、A【解析】

考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看4、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個數(shù)均是1,所以中位數(shù)是1.故選D.【點睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).5、B【解析】

分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關(guān)鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.6、B【解析】

根據(jù)完全平方公式對A進行判斷;根據(jù)冪的乘方與積的乘方對B、C進行判斷;根據(jù)合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關(guān)鍵.7、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.8、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.9、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.10、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點睛】本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.11、C【解析】

根據(jù)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),可能不止一個,對這個鞋店的經(jīng)理來說,他最關(guān)注的是數(shù)據(jù)的眾數(shù).【詳解】解:根據(jù)商店經(jīng)理統(tǒng)計表決定本月多進尺碼為23.0cm的女式運動鞋,就說明穿23.0cm的女式運動鞋的最多,

則商店經(jīng)理的這一決定應(yīng)用的統(tǒng)計量是這組數(shù)據(jù)的眾數(shù).

故選:C.【點睛】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的平均數(shù)、中位數(shù)、眾數(shù)各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.12、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應(yīng)用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1≤a≤1【解析】

根據(jù)y的取值范圍可以求得相應(yīng)的x的取值范圍.【詳解】解:∵二次函數(shù)y=x1﹣4x+4=(x﹣1)1,∴該函數(shù)的頂點坐標為(1,0),對稱軸為:x=﹣,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函數(shù)值y的取值范圍為0≤y≤1時,自變量x的范圍為1≤x≤3,故可得:1≤a≤1,故答案為:1≤a≤1.【點睛】此題考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.14、【解析】

利用三角形中位線的性質(zhì)定理以及相似三角形的性質(zhì)即可解決問題;【詳解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【點睛】考查相似三角形的判定和性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形中位線定理.15、20cm.【解析】

將杯子側(cè)面展開,建立A關(guān)于EF的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側(cè)面展開,作A關(guān)于EF的對稱點A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.同時也考查了同學們的創(chuàng)造性思維能力.16、y(x﹣y)2【解析】

原式提取公因式,再利用完全平方公式分解即可【詳解】x2y﹣2xy2+y3=y(tǒng)(x2-2xy+y2)=y(x-y)2.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握運算法則是解本題的關(guān)鍵.17、50°【解析】

利用平行線的性質(zhì)推出∠EFC=∠2=130°,再根據(jù)鄰補角的性質(zhì)即可解決問題.【詳解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案為50°【點睛】本題考查平行線的性質(zhì)、鄰補角的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考基礎(chǔ)題.18、【解析】原式=.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、8【解析】

原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算,合并得到最簡結(jié)果,將x與y的值代入計算即可求出值.【詳解】原式==,當,時,原式=【點睛】本題考查了整式的混合運算-化簡求值,涉及的知識有:完全平方公式、單項式乘以多項式、去括號法則以及合并同類項法則,熟練掌握公式及法則是解本題的關(guān)鍵.20、(1);(2)詳見解析;(3)為定值,=【解析】

(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),用待定系數(shù)法求解即可;(2)如圖作輔助線AE、BF垂直

x軸,設(shè)A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結(jié)論;(3)作PQ⊥AB于點Q,設(shè)P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【詳解】(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如圖作輔助線AE、BF垂直

x軸,設(shè)A(m,am2)、B(n,an2),∵OA⊥OB,∴∠AOE=∠OBF,∴△AOE∽△OBF,∴,,,直線AB過點A(m,am2)、點B(n,an2),∴過點(0,);(3)作PQ⊥AB于點Q,設(shè)P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2∵PQ∥ON,∴,ON=====at(m+t)=amt+at2,同理:OM=–amt+at2,所以,OM+ON=2at2=–2c=OC,所以,=.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質(zhì),平行線分線段成比例定理.正確作出輔助線是解答本題的關(guān)鍵.21、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質(zhì)求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設(shè)菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點睛】本題主要考查二次函數(shù)和一元二次方程的應(yīng)用,解題的關(guān)鍵是將實際問題轉(zhuǎn)化為一元二次方程和二次函數(shù)的問題.22、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數(shù)據(jù)總數(shù),再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項目的名男生編上號碼,將名女生編上號碼.用表格列出所有可能出現(xiàn)的結(jié)果:由表格可知,共有種可能出現(xiàn)的結(jié)果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應(yīng)給分)考點:統(tǒng)計與概率的綜合運用.23、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】

(1)直接將點代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;(2)點(2,1)代入一次函數(shù)解析式,得到n=?2m,利用m與n的關(guān)系能求出二次函數(shù)對稱軸x=1,由一次函數(shù)經(jīng)過一、三象限可得m>1,確定二次函數(shù)開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數(shù)解析式,再結(jié)合對稱抽得h=,將得到的三個關(guān)系聯(lián)立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數(shù)y=mx+n中,,解得,∴一次函數(shù)的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數(shù)y=mx2+nx+1,,解得,∴二次函數(shù)的解析式是.(2)∵一次函數(shù)y=mx+n經(jīng)過點(2,1),∴n=﹣2m,∵二次函數(shù)y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數(shù)y=mx+n圖象經(jīng)過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數(shù)y=x2+x+1也經(jīng)過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【點睛】本題考點:點與函數(shù)的關(guān)系;二次函數(shù)的對稱軸與函數(shù)值關(guān)系;待定系數(shù)法求函數(shù)解析式;不等式的解法;數(shù)形結(jié)合思想是解決二次函數(shù)問題的有效方法.24、(1)1;(2)【解析】(1)由勾股定理求AB,設(shè)⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據(jù)CG平分直角∠ACB可知△PCG為等腰直角三角形,設(shè)PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設(shè)GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.25、(1)詳見解析;(2)詳見解析;(3)910【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=12(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對應(yīng)邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.(1)證明:連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)證明:連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根據(jù)勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=22∵△DEF為等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF∵EF=5,∴DE=5×22∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE∴102?GE=2,即GE=2則GD=GE+ED=91026、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論