版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省湖州市南潯鎮(zhèn)東遷中學2025屆數(shù)學九上期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.一個菱形的邊長是方程的一個根,其中一條對角線長為8,則該菱形的面積為()A.48 B.24 C.24或40 D.48或802.下列函數(shù)是關于的反比例函數(shù)的是()A. B. C. D.3.下列事件中,是必然事件的是()A.拋擲一枚硬幣正面向上 B.從一副完整撲克牌中任抽一張,恰好抽到紅桃C.今天太陽從西邊升起 D.從4件紅衣服和2件黑衣服中任抽3件有紅衣服4.如圖在正方形網格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網格圖形是()A. B. C. D.5.如圖,河壩橫斷面的迎水坡AB的坡比為3:4,BC=6m,則坡面AB的長為()A.6m B.8m C.10m D.12m6.⊙O的半徑為3,點P到圓心O的距離為5,點P與⊙O的位置關系是()A.無法確定 B.點P在⊙O外 C.點P在⊙O上 D.點P在⊙O內7.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m8.若反比例函數(shù)的圖象在每一條曲線上都隨的增大而增大,則的取值范圍是()A. B. C. D.9.如圖,在中,,,點是邊上的一個動點,以為直徑的圓交于點,若線段長度的最小值是4,則的面積為()A.32 B.36 C.40 D.4810.已知⊙O的半徑是6,點O到直線l的距離為5,則直線l與⊙O的位置關系是A.相離 B.相切 C.相交 D.無法判斷二、填空題(每小題3分,共24分)11.反比例函數(shù)和在第一象限的圖象如圖所示,點A在函數(shù)圖像上,點B在函數(shù)圖像上,AB∥y軸,點C是y軸上的一個動點,則△ABC的面積為_____.12.數(shù)據(jù)﹣3,6,0,5的極差為_____.13.在中,,,,則內切圓的半徑是__________.14.已知某種禮炮的升空高度h(m)與飛行時間t(s)的關系是h=+20t+1,若此禮炮在升空到最高處時引爆,到引爆需要的時間為_____s.15.如圖,點A、B分別在反比例函數(shù)y=(k1>0)和y=(k2<0)的圖象上,連接AB交y軸于點P,且點A與點B關于P成中心對稱.若△AOB的面積為4,則k1-k2=______.16.如圖,平行四邊形中,,,,點E在AD上,且AE=4,點是AB上一點,連接EF,將線段EF繞點E逆時針旋轉120°得到EG,連接DG,則線段DG的最小值為____________________.17.如圖,在中,,,,點為邊上一點,,將繞點旋轉得到(點、、分別與點、、對應),使,邊與邊交于點,那么的長等于__________.18.已知二次函數(shù)的部分圖象如圖所示,則一元二次方程的解為:_____.三、解答題(共66分)19.(10分)如圖,在中,,,以為頂點在邊上方作菱形,使點分別在邊上,另兩邊分別交于點,且點恰好平分.(1)求證:;(2)請說明:.20.(6分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.21.(6分)如圖,在直角坐標系中,點B的坐標為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.(1)求直線EF的解析式.(2)求四邊形BEOF的面積.(3)若點P在y軸上,且是等腰三角形,請直接寫出點P的坐標.22.(8分)已知x2+xy+y=12,y2+xy+x=18,求代數(shù)式3x2+3y2﹣2xy+x+y的值.23.(8分)某商品的進價為每件40元,現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調查反映:每漲價1元,每星期要少賣出10件.(1)每件商品漲價多少元時,每星期該商品的利潤是4000元?(2)每件商品的售價為多少元時,才能使每星期該商品的利潤最大?最大利潤是多少元?24.(8分)如圖,在中,,,點在邊上,且線段繞著點按逆時針方向旋轉能與重合,點是與的交點.(1)求證:;(2)若,求的度數(shù).25.(10分)已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求的面積;(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.26.(10分)如圖,一次函數(shù)圖象經過點,與軸交于點,且與正比例函數(shù)的圖象交于點,點的橫坐標是.請直接寫出點的坐標(,);求該一次函數(shù)的解析式;求的面積.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的對角線互相垂直平分和三角形三邊的關系得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線為6,然后計算菱形的面積.【詳解】解:,所以,,∵菱形一條對角線長為8,∴菱形的邊長為5,∴菱形的另一條對角線為,∴菱形的面積.故選:B.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了三角形三邊的關系.也考查了三角形三邊的關系和菱形的性質.2、B【分析】根據(jù)反比例函數(shù)的定義進行判斷.【詳解】A.,是一次函數(shù),此選項錯誤;B.,是反比例函數(shù),此選項正確;C.,是二次函數(shù),此選項錯誤;D.,是y關于(x+1)的反比例函數(shù),此選項錯誤.故選:B【點睛】本題考查了反比例函數(shù)的定義,解題的關鍵是掌握反比例函數(shù)的定義.3、D【分析】必然事件是指在一定條件下一定會發(fā)生的事件,根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、拋擲一枚硬幣正面向上,是隨機事件,故本選項錯誤;
B、從一副完整撲克牌中任抽一張,恰好抽到紅桃,是隨機事件.故本選項錯誤;
C、今天太陽從西邊升起,是不可能事件,故本選項錯誤;
D、從4件紅衣服和2件黑衣服中任抽3件有紅衣服,是必然事件,故本選項正確.
故選:D.【點睛】本題考查了事件發(fā)生的可能性,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、C【分析】可利用正方形的邊把對應的線段表示出來,利用一角相等且夾邊對應成比例兩個三角形相似,根據(jù)各個選項條件篩選即可.【詳解】解:根據(jù)勾股定理,AC=,BC=,AB=所以,,,,則+=所以,利用勾股定理逆定理得△ABC是直角三角形
所以,=A.不存在直角,所以不與△ABC相似;B.兩直角邊比(較長的直角邊:較短的直角邊)=≠2,所以不與△ABC相似;C.選項中圖形是直角三角形,且兩直角邊比(較長的直角邊:較短的直角邊)=2,故C中圖形與所給圖形的三角形相似.D.不存在直角,所以不與△ABC相似.
故選:C.【點睛】此題考查了勾股定理在直角三角形中的運用,及判定三角形相似的方法,本題中根據(jù)勾股定理計算三角形的三邊長是解題的關鍵.5、C【分析】迎水坡AB的坡比為3:4得出,再根據(jù)BC=6m得出AC的值,再根據(jù)勾股定理求解即可.【詳解】由題意得∴∴故選:C.【點睛】本題考查解直角三角形的應用,把坡比轉化為三角函數(shù)值是關鍵.6、B【分析】根據(jù)點在圓上,則d=r;點在圓外,d>r;點在圓內,d<r(d即點到圓心的距離,r即圓的半徑).【詳解】解:∵OP=5>3,
∴點P與⊙O的位置關系是點在圓外.
故選:B.【點睛】本題主要考查了點與圓的位置關系,理解并掌握點和圓的位置關系與數(shù)量之間的等價關系是解題的關鍵.7、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.8、B【分析】根據(jù)反比例函數(shù)的性質,可求k的取值范圍.【詳解】解:∵反比例函數(shù)圖象的每一條曲線上,y都隨x的增大而增大,
∴k?2<0,
∴k<2
故選B.【點睛】本題考查了反比例函數(shù)的性質,熟練掌握當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減??;當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.9、D【分析】連接BQ,證得點Q在以BC為直徑的⊙O上,當點O、Q、A共線時,AQ最小,在中,利用勾股定理構建方程求得⊙O的半徑R,即可解決問題.【詳解】如圖,連接BQ,∵PB是直徑,∴∠BQP=90°,
∴∠BQC=90°,
∴點Q在以BC為直徑的⊙O上,∴當點O、Q、A共線時,AQ最小,設⊙O的半徑為R,在中,,,,∵,即,解得:,故選:D【點睛】本題考查了圓周角定理,勾股定理,三角形面積公式.解決本題的關鍵是確定Q點運動的規(guī)律,從而把問題轉化為圓外一點到圓上一點的最短距離問題.10、C【解析】試題分析:根據(jù)直線與圓的位置關系來判定:①直線l和⊙O相交,則d<r;②直線l和⊙O相切,則d=r;③直線l和⊙O相離,則d>r(d為直線與圓的距離,r為圓的半徑).因此,∵⊙O的半徑為6,圓心O到直線l的距離為5,∴6>5,即:d<r.∴直線l與⊙O的位置關系是相交.故選C.二、填空題(每小題3分,共24分)11、1【分析】設A(m,),B(m,),則AB=-,△ABC的高為m,根據(jù)三角形面積公式計算即可得答案.【詳解】∵A、B分別為、圖象上的點,AB∥y軸,∴設A(m,),B(m,),∴S△ABC=(-)m=1.故答案為:1【點睛】本題考查反比例函數(shù)圖象上點的坐標特征,熟知反比例函數(shù)圖象上點的坐標都滿足反比例函數(shù)的解析式是解題關鍵.12、1【分析】根據(jù)極差的定義直接得出結論.【詳解】∵數(shù)據(jù)﹣3,6,0,5的最大值為6,最小值為﹣3,∴數(shù)據(jù)﹣3,6,0,5的極差為6﹣(﹣3)=1,故答案為1.【點睛】此題考查了極差,極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值.13、1【分析】先根據(jù)勾股定理求出斜邊AB的長,然后根據(jù)直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)計算即可.【詳解】解:在中,,,,根據(jù)勾股定理可得:∴內切圓的半徑是故答案為:1.【點睛】此題考查的是求直角三角形內切圓的半徑,掌握直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)是解決此題的關鍵.14、1【分析】將關系式h=t2+20t+1轉化為頂點式就可以直接求出結論.【詳解】解:∵h=t2+20t+1=(t﹣1)2+11,∴當t=1時,h取得最大值,即禮炮從升空到引爆需要的時間為1s,故答案為:1.【點睛】本題考查了二次函數(shù)的性質頂點式的運用,解答時將一般式化為頂點式是關鍵.15、1【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,先證明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代換和k的幾何意義得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A與點B關于P成中心對稱.
∴P點為AB的中點,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案為1.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)的性質.16、【分析】結合已知條件,作出輔助線,通過全等得出ME=GN,且隨著點F的移動,ME的長度不變,從而確定當點N與點D重合時,使線段DG最?。驹斀狻拷猓喝鐖D所示,過點E做EM⊥AB交BA延長線于點M,過點G作GN⊥AD交AD于點N,∴∠EMF=∠GNE=90°∵四邊形ABCD是平行四邊形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG為EF逆時針旋轉120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF與△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴當點N與點D重合時,使線段DG最小,如圖所示,此時,故答案為:.【點睛】本題考查了平行四邊形的性質、旋轉的性質、全等三角形的構造、幾何中的動點問題,解題的關鍵是作出輔助線,得到全等三角形,并發(fā)現(xiàn)當點N與點D重合時,使線段DG最?。?7、【分析】如圖,作PH⊥AB于H.利用相似三角形的性質求出PH,再證明四邊形PHGC′是矩形即可解決問題.【詳解】如圖,作PH⊥AB于H.
在Rt△ABC中,∠C=90°,AC=5,sinB=,
∴=,
∴AB=13,BC==12,
∵PC=3,
∴PB=9,
∵∠BPH∽△BAC,
∴,
∴,
∴PH=,
∵AB∥B′C′,
∴∠HGC′=∠C′=∠PHG=90°,
∴四邊形PHGC′是矩形,
∴CG′=PH=,
∴A′G=5-=,
故答案為.【點睛】此題考查旋轉變換,平行線的性質,解直角三角形等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.18、【解析】依題意得二次函數(shù)y=的對稱軸為x=-1,與x軸的一個交點為(-3,0),∴拋物線與x軸的另一個交點橫坐標為(-1)×2-(-3)=1,∴交點坐標為(1,0)∴當x=1或x=-3時,函數(shù)值y=0,即,∴關于x的一元二次方程的解為x1=?3或x2=1.故答案為:.點睛:本題考查的是關于二次函數(shù)與一元二次方程,在解題過程中,充分利用二次凹函數(shù)圖象,根據(jù)圖象提取有用條件來解答,這樣可以降低題的難度,從而提高解題效率.三、解答題(共66分)19、(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)四邊形是菱形,得到,又推出,又點恰好平分,三線合一,(2)可證,再證,從而求得【詳解】證明:(1)連接,∵,,∴.∵四邊形是菱形,∴,,∴是等邊三角形.∵是的中點,∴(2)∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.∴.【點睛】本題考查了菱形的性質、三線合一以及相似三角形的性質.20、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數(shù)關系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當當時,取最大值;(3)根據(jù)題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據(jù)題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小.為正整數(shù),當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據(jù)題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數(shù)量為滿足的整數(shù)時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.【點睛】本題主要考查一次函數(shù)的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數(shù)的增減性.21、(1);(2)1;(3)點P的坐標為或.【分析】(1)點E與點B的縱坐標相同,點F與點B的橫坐標相同,分別將y=1,x=2代入反比例函數(shù)解析式,可求出E、F的坐標,然后采用待定系數(shù)法即可求出直線EF的解析式;(2)利用即可求出答案;(3)設P點坐標為(0,m),分別討論OP=OE,OP=PE,OE=PE三種情況,利用兩點間的距離公式求出m即可得到P點坐標.【詳解】解:(1)軸,軸,將代入,得將代入得:,設直線EF的解析式為把E、F的坐標代入解得∴直線EF的解析式為(2)由題意可得:=1(3)設P點坐標為(0,m),∵E(1,1),∴,,①當OP=OE時,,解得,∴P點坐標為或②當OP=PE時,,解得∴P點坐標為③當OE=PE時,,解得,當m=0時,P與原點重合,不符合題意,舍去,∴P點坐標為綜上所述,點P的坐標為或【點睛】本題考查了反比例函數(shù)的圖象與性質,待定系數(shù)法求一次函數(shù)解析式,以及等腰三角形的性質,熟練掌握待定系數(shù)法求函數(shù)解析式和兩點間的距離公式并進行分類討論是解題的關鍵.22、或【分析】分別將已知的兩個等式相加和相減,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代數(shù)式的值即可.【詳解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴將⑤分別代入④得,x﹣y=或x﹣y=﹣,∴或當時,當時,
故答案為:或【點睛】本題考查解二元一次方程組;理解題意,將已知式子進行合理的變形,再求二元一次方程組的解是解題的關鍵.23、(1)20;(2)65,1.【分析】(1)每件漲價x元,則每件的利潤是(60-40+x)元,所售件數(shù)是(300-10x)件,根據(jù)利潤=每件的利潤×所售的件數(shù)列方程,即可得到結論;
(2)設每件商品漲價m元,每星期該商品的利潤為W,根據(jù)題意先列出函數(shù)解析式,再由函數(shù)的性質即可求得如何定價才能使利潤最大.【詳解】解:(1)設每件商品漲價x元,
根據(jù)題意得,(60-40+x)(300-10x)=4000,
解得:x1=20,x2=-10,(不合題意,舍去),
答:每件商品漲價20元時,每星期該商品的利潤是4000元;
(2)設每件商品漲價m元,每星期該商品的利潤為W,
∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1
∴當m=5時,W最大值.
∴60+5=65(元),
答:每件定價為65元時利潤最大,最大利潤為1元.【點睛】本題主要考查了二次函數(shù)的應用,最值問題一般的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 活動招商合同范例
- 2025常用自建房買賣合同
- 帶貨運營合同范例
- 樣寫公司勞動合同范例
- 土建施工合同范例
- 港口碼頭合同范例
- 租賃中止合同范例
- 抵押養(yǎng)殖動物合同范例
- 產品部入股合同范例
- 廣州酒店托管服務合同范例
- 死亡醫(yī)學證明管理規(guī)定(3篇)
- 2024《整治形式主義為基層減負若干規(guī)定》全文課件
- 常用統(tǒng)計軟件應用智慧樹知到期末考試答案章節(jié)答案2024年揚州大學
- 中國法律史-第三次平時作業(yè)-國開-參考資料
- 區(qū)域分析與規(guī)劃智慧樹知到期末考試答案章節(jié)答案2024年寧波大學
- 食品營養(yǎng)學(暨南大學)智慧樹知到期末考試答案2024年
- 國開電大可編程控制器應用實訓形考任務1實訓報告
- 緬懷偉大領袖,爭做時代新人征文
- 廢氣治理設施運行管理規(guī)程
- 【word模板】圣誕節(jié)圣誕元素信紙
- 淺論提高森林生產力的實現(xiàn)途徑
評論
0/150
提交評論