




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
LargeLanguageModel(LLM)ThreatsTaxonomy
ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis
/research/working-groups/ai-controls
?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subject
tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the
trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Reviewers
SiahBurke
PhilAlger
MarcoCapotondi
IlangoAllikuzhi
DanieleCatteddu
BakrAbdouh
KenHuang
VinayBansalVijayBolinaBrianBrinkley
Contributors
AnupamChatterjeeJasonClinton
MarinaBregkou
VidyaBalasubramanian
AlanCurranSandyDunnDavidGee
AvishayBar
ZackHamilton
MonicaChakrabortyAntonChuvakin
RicardoFerreiraAlessandroGrecoKrystalJackson
VicHargraveJerryHuang
RajeshKambleGianKapoorRicoKomenda
GianKapoor
VaniMittal
KushalKumar
AnkitaKumariYutaoMa
DannyManimboVishwasManralJesusLuna
MichaelRoza
LarsRuddigheit
JasonMorton
AmeyaNaik
GabrielNwajiakuMeghanaParwatePrabalPathak
RuchirPatwa
BrianPendletonKunalPradhan
DorSarig
Dr.MattRoldan
AmitSharma
RakeshSharmaKurtSeifried
CalebSima
EricTierling
JenniferToren
RobvanderVeerAshishVashishthaSounilYu
DennisXu
OmarSantos
Dr.JoshuaScarpino
NataliaSemenova
BhuvaneswariSelvaduraiJamillahShakoor
TalShapira
AkramSheriff
SrinivasTatipamula
Maria(MJ)SchwengerMahmoudZamani
RaphaelZimme
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ObjectivesandScope 5
RelationshipwiththeCSAAIControlFramework 6
1.LargeLanguageModelAssets 7
1.1.DataAssets 7
1.2.LLM-OpsCloudEnvironment 9
1.3.Model 10
1.4.OrchestratedServices 11
1.5.AIApplications 13
2.LLM-ServiceLifecycle 15
2.1Preparation 16
2.2Development 17
2.3Evaluation/Validation 18
2.4Deployment 20
2.5Delivery 22
2.6ServiceRetirement 24
3.LLM-ServiceImpactCategories 26
4.LLMServiceThreatCategories 26
4.1.ModelManipulation 26
4.2.DataPoisoning 27
4.3.SensitiveDataDisclosure 27
4.4.ModelTheft 27
4.5.ModelFailure/Malfunctioning 27
4.6.InsecureSupplyChain 27
4.7.InsecureApps/Plugins 27
4.8.DenialofService(DoS) 28
4.9.LossofGovernance/Compliance 28
5.References/Sources 29
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
ObjectivesandScope
ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls
FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon
taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI
SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.
Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):
●LLMAssets
●LLM-ServiceLifecycle
●LLM-ServiceImpactCategories
●LLM-ServiceThreatCategories
Figure1:CSALLMThreatTaxonomy
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a
strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.
Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand
TerminologyofAttacksandMitigations”[Barrettetal.,2023].
Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,
developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga
commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.
RelationshipwiththeCSAAIControlFramework
TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI
technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.
Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.
PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween
AISafetyandAI
Security
.
Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements
governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.
1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
1.LargeLanguageModelAssets
ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM
systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this
sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,
Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.
Figure2:LLMAssets
1.1.DataAssets
InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data
assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Datausedfortraining,benchmarking,testing,andvalidation
●Datausedforfine-tunetraining
●DatausedforRetrieval-AugmentedGeneration(RAG)
●Datacardsthatdefinethemetadataofthedatainuse
●Inputdata
●Usersessiondata
●Modeloutputdata
●Modelparameters(weights)
●Modelhyperparameters
●LogdatafromLLMsystems
Thefollowingarethedefinitionsoftheseassets:
1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis
treatedandmanagedindividually.
2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.
3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By
retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious
sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.
4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance
regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.
5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries
aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.
6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.
7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.
9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including
parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.
10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,
includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.
1.2.LLM-OpsCloudEnvironment
TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:
●Cloudrunningthetrainingenvironment
●Cloudrunningthemodelinferencepoint
●CloudrunningtheAIapplications
●Hybridandmulti-cloudinfrastructure
●Securityofthedeploymentenvironment
●Continuousmonitoring
●Cloudtohosttrainingdata(Storage)
ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:
1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.
2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated
infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.
3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI
applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.
4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.
5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant
surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.
6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.
1.3.Model
Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.
Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor
closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.
Wedefinethefollowingmodelassetsinthissubsection:
●FoundationModel
●Fine-TunedModel
●OpenSourcevs.ClosedSourceModels
●Domain-SpecificModels
●Modelcards
1.FoundationModel:
TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation
models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto
specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,
“Frontier
Model”
canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.
2.Fine-TunedModel:
DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto
catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe
foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
3.Open-Sourcevs.Closed-SourceModels:
Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder
open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.
Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.
Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.
4.Domain-SpecificModels:
Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.
5.Modelcards:
Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext
metadatachanges.[CSA,2024]
Moredetailsofmodelcardscanbefound,forexample,atthe
HuggingFace
platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.
1.4.OrchestratedServices
TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.
ThefollowingisthelistofOrchestratedServicesAssets:
●CachingServices
●SecurityGateways(LLMGateways)
●DeploymentServices
●MonitoringServices
●OptimizationServices
●Plug-insforSecurity
●Plug-insforCustomizationandIntegration
●LLMGeneralAgents
2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe
AIRiskandTechnology
workinggroup
.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.
1.CachingServices:
CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring
frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.
2.SecurityGateways(LLMGateways):
SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas
intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),
PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.
3.DeploymentServices:
DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment
processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.
4.MonitoringServices:
MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These
servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely
interventiontoupholdtheoptimaloperationofLLMs.
5.OptimizationServices:
OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference
strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.
6.Plug-insforSecurity:
Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.
7.Plug-insforCustomizationandIntegration:
Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless
integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring
LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
8.LLMGeneralAgents:
LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas
●planning,
●reflection,
●functioncalling,
●monitoring,
●dataprocessing,
●explainability,
●optimization,
●scaling,andcollaboration,
●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.
1.5.AIApplications
AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness
operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto
governtheirdevelopment,deployment,andusage.
AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse
businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,
sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface
throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.
AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.
AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible
developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.
Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework
shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.
AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor
governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including
modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof
ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto
conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland
datacards.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
2.LLM-ServiceLifecycle
TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,
reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand
planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand
standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.
DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom
organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.
Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.
●Preparation:
。Datacollection
。Datacuration
。Datastorage
。Resourceprovisioning。Teamandexpertise
●Development:
。Design。Training
。Keyconsiderationsduringdevelopment。Guardrails
●Evaluation/Validation:
。Evaluation
。Validation/RedTeaming。Re-evaluation
。Keyconsiderationsduringevaluation/validation
●Deployment:
。Orchestration
。AIServicessupplychain。AIapplications
●Delivery:
。Operations。Maintenance
。Continuousmonitoring。Continuousimprovement
?Copyright2024,CloudS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑公司與供應(yīng)商貨物采購合同范本
- 2025新版公司勞動(dòng)合同書
- 電子政務(wù)服務(wù)改革措施和實(shí)施方案
- 生物化學(xué)與分子生物學(xué)專業(yè)知識點(diǎn)總結(jié)與習(xí)題集
- 社交媒體平臺運(yùn)營策略及用戶增長計(jì)劃研究
- 服裝品牌設(shè)計(jì)與生產(chǎn)協(xié)議
- 山東省棗莊市青島版七年級上冊第一單元第5課《信息安全與信息道德》課堂教學(xué)設(shè)計(jì)
- 市區(qū)拆房施工方案
- 2025屆江西省九江市高三下學(xué)期第二次高考模擬統(tǒng)一考試歷史試題 (原卷版+解析版)
- 移動(dòng)支付平臺安全升級方案
- 快餐店創(chuàng)業(yè)計(jì)劃書
- 2025年輔警招聘考試試題庫及答案(全優(yōu))
- 2025-2030全球及中國4,4-二氟二苯甲酮行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 【初中地理】西亞課件-2024-2025學(xué)年人教版(2024)七年級地理下冊
- 2024年4月27日福建省事業(yè)單位《綜合基礎(chǔ)知識》真題及答案
- 交通運(yùn)輸行業(yè)股權(quán)分配方案
- 中試平臺管理制度
- 入職申請表(完整版)
- 醫(yī)院太平間管理登記表
- CSB05 1426 漆膜顏色標(biāo)準(zhǔn)樣卡
- 標(biāo)識標(biāo)牌的制作與安裝精編版
評論
0/150
提交評論