版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AIResilience:
ARevolutionaryBenchmarkingModelforAISafety
ThepermanentandofficiallocationfortheAIGovernanceandComplianceWorkingGroupis
/research/working-groups/ai-governance-compliance
?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subjectto
thefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)thetrademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Dr.ChantalSpleiss
Contributors
RomeoAyalin
FilipChyla
BeckyGaylord
FrederickHanigRockyHeckmanHadirLabib
LarsRuddikeit
AlexSharpe
AshishVashishtha
Reviewers
SounilYu
DebjyotiMukherjeeMichaelRoza
PeterVentura
UdithWickramasuriyaGovindarajPalanisamyMadhaviNajana
RakeshSharmaDavideScatto
PareshPatel
PiradeepanNagarajanGaetanoBisaz
HongtaoHao,PhDEllePyle
GauravSingh
KenHuang
KennethT.Moras
TolgayKizilelma,PhDAkshayShetty
SauravBhattacharyaPejuOkpamen
GabrielNwajiaku
MeghanaParwate
AkshatVashishtha
HemmaPrafullchandraRenataBudko
DesmondFoo
ScottS.NewmanGianKapoor
ImranBanani
ElierCruz
MadhavChablani
CSAGlobalStaff
RyanGifford
StephenLumpe
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ExecutiveSummary 6
Introduction 6
PartI:UnderstandingtheFoundations 7
Governancevs.Compliance 7
GovernanceandCompliance:aMovingTarget 7
TheLandscapeofAI 9
ABriefHistoryofAI 9
TheLandscapeofAI 10
MachineLearning(ML) 10
TinyMachineLearning(tinyML) 10
DeepLearning(AdvancedML) 10
GenerativeArtificialIntelligence(GenAI) 11
ArtificialGeneralIntelligence(AGI) 11
TheLandscapeofTrainingMethods 11
SupervisedLearning 11
UnsupervisedLearning 12
ReinforcedLearning 12
Semi-supervisedLearning 12
Self-supervisedLearning 12
FederatedLearning 12
TrainingMethodsRegulationsandEthicalConsiderations 13
Licensing,Patenting&CopyrightofAITechnology 14
PartII:Real-WorldCaseStudiesandIndustryChallenges 15
ABriefHistoryofAICaseStudies 15
2016:Microsoft’sTay 15
2018:Amazon’sAIRecruitingToolwasBiasedAgainstWomen 15
2019:TeslaAutopilotAccidents 15
2019:HealthcareAlgorithmRacialBias 16
2019:AllegationsofAppleCardBias 16
2020:BiasedOffenderAssessmentSystems 16
2022:AirCanadaBoundbyChatbot'sRefundPolicy 16
2023:Lawsuit:UnitedHealth'sFaultyAIDeniesElderlyCare 17
2024:Google'sGemini:ALessoninAIBias 17
Industries:Regulations&Challenges 17
Automotive 17
Aviation 18
CriticalInfrastructure&EssentialServices 19
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
TheDelicateBalance:Performancevs.Security 19
TheAchillesHeel:IoTandEdgeAI 19
TowardsaFuture-ProofInfrastructure 20
ContinuousEvolution:ThePathAhead 20
TheRoadAhead 20
CurrentInitiatives 21
USExecutiveOrder14110(Oct2023) 21
EUAIAct 21
OECDAIPrinciples 21
TheArtificialIntelligenceandDataAct(AIDA) 21
Defense 22
ArtificialIntelligenceandEmergingTechnologiesinDefense 22
HistoricalRoleofAIinDefense 22
AIRegulationsandDefense 23
Education 24
Finance 24
GuidanceonModelRiskManagementSR11-7 25
Healthcare 27
ExploringTrustworthyAIinHealthcare 28
TrustworthyAIinHealthcareLiterature 28
KeyRequirementsfor“TrustworthyAI” 29
ConsolidatedList 29
ConclusionsfromtheHealthcareLiterature 30
BiasinHealthcare 30
FurtherApplicationsofML/AIinHealthcare 31
PartIII:AIResilienceReframed:BenchmarkingModelInspiredbyEvolution 32
Comparison:BiologicalEvolutionvs.AIDevelopment 32
DiversityandResilienceinAISystems 33
TheChallengeofBenchmarkingAIResilience 33
AIResilience-SuggestedDefinition 33
ProposedAIResilienceScore 34
IntelligenceAwareness 35
FundamentalDifferencesinIntelligentSystems 35
Bibliography 36
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
ExecutiveSummary
A(r)evolutionaryAIbenchmarkingmodelisintroducedtonavigatethecomplexlandscapeofAI
governanceandcompliance.Revenue-drivenadvancementsoutpaceregulatoryeffortstoestablish
safeguards,oftenfallingshortinensuringthatAIsystemsaretrulyrobustandtrustworthy.Leadershipaddressesthiscriticalgapbyintroducinganovelbenchmarkingmodelinspiredbyprinciplesofevolutionandpsychologytoprioritizerobustnessalongsideperformance,empoweringexecutivestoproactivelyassesstheoverallqualityoftheirAIsystems.
DrawinglessonsfrompastAIfailuresincasestudiesandanalyzingindustrieslikeautomotive,aviation,criticalinfrastructureandessentialservices,defense,education,finance,andhealthcare,weprovidepracticalinsightsandactionableguidanceforbusinesses.Weadvocateforintegratingdiverse
perspectiveswithregulatoryguidelinestopropeltheindustrytowardsmoreethicalandtrustworthyAI
applications.Thefocusontrustworthinessiskeyforminimizingrisks,protectingreputation,andfosteringresponsibleAIinnovation,deployment,anduse.
Thisdocumentempowerskeydecisionmakers,includinggovernmentofficials,regulatorybodies,and
industryleaders,toestablishAIgovernanceframeworksthatensureethicalAIdevelopment,deployment,anduse.AnovelbenchmarkingmodelisintroducedtoassessAIquality,providingapracticaltoolfor
long-termsuccess.
Introduction
TherapidevolutionofArtificialIntelligence(AI)promisesunprecedentedadvances.However,asAI
systemsbecomeincreasinglysophisticated,theyalsoposeescalatingrisks.Pastincidents,frombiasedalgorithmsinhealthcaretomalfunctioningautonomousvehicles,starklyhighlighttheconsequencesofAIfailures.Currentregulatoryframeworksoftenstruggletokeeppacewiththespeedoftechnological
innovation,leavingbusinessesvulnerabletobothreputationalandoperationaldamage.
Inresponsetothesechallenges,thisdocumentaddressestheurgentneedforamoreholisticperspectiveonAIgovernanceandcompliance.We'llexplorethefoundationsofAI,examineissuesacrosscritical
industries,andprovidepracticalguidanceforresponsibleimplementation.Wepresentanovelapproachthatcomparesthe(r)evolutionofAIwithbiology,andintroducesathought-provokingconceptof
diversitytoenhancesafetyofAItechnology.Differencesinintelligenceandthesuccessfulinteractionofsuchsystemsarediscussed.Aninnovativebenchmarkingframeworkispresentedtoincreasethesafetyandreliabilityofthisdisruptivetechnology.
Thisapproachempowersdecision-makersandtechnicalteamsaliketoassessthesafetyand
trustworthinessofAIsystems.WeadvocateforintegratingdiverseperspectivesandregulatoryguidelinestofosterethicalAIinnovationandestablishstronggovernancepractices.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
PartI:UnderstandingtheFoundations
Governancevs.Compliance
Governanceandcomplianceareessentialaspectsoforganizationalmanagement,ensuringadherencetoregulations,ethicalprinciples,standards,andsustainabilitypracticesoutlinedinthebusinesscodeof
conduct.Alignmentwithaforementionedprinciplesandregulationsensureeffectivebusinesscontinuityandethicalpractice.
Governance
[1]
,whichreferstooverseeingandcontrollingsomething,isimplementedinatop-downapproach.Seniormanagementisresponsiblefordefiningstrategyandriskappetite,andestablishinga
governanceframeworkthroughpolicies,standards,and/orprocedures.Thesedirectivesshapetheorganization'soverarchingriskmanagementapproach,complianceobligations,anddecision-makingprocesses.Governancecreatesacultureofaccountability,transparency,ethicalbehavior,and
sustainabilitywhileprioritizingsecurityandprivacymeasuresacrossthecompany.
Contrarytothetop-downapproachofgovernance,Compliance
[2]
followsabottom-upapproach,whereemployeesatvariouslevelsimplementandadheretothegovernanceframeworkdefinedbysenior
managementtomeetregulatoryrequirements.Compliancefocusesonensuringadherencetolaws,
regulations,andindustrystandards,aswellasthegoverninginternalbusinesscodeofconduct.Itisa
crucialcomponentoforganizationalmanagementtoensurethattheorganizationoperateswithin
applicablelegalandregulatoryrequirements,acceptableethicalboundaries,andminimizedriskexposure.
GovernanceandCompliance:aMovingTarget
Whilegovernanceandcomplianceareclearlydefinedobjectives,theuseofanyAIchallengestraditionalapproaches.AIcanbeviewedfromvariousperspectives,suchasatechnology,asystemusingoneor
moremodels,abusinessapplication,orauserplatform.AIcanserveonesingle,oramultitudeof,end
users,anditcanbeusedbybusinesses,informationbrokers,orotherAItechnology,toperformtasks,
solveproblems,makedecisions,orinteractwiththeenvironment.Emergingbestpractices,standards,
andregulationssurroundingtheuseofAIcontinuetoevolve,makingitchallengingtohaveaconcretesetofcompliancerequirementstoimplementandmonitor.Forcompaniesconductinginternationalbusiness,thischallengegrowsexponentially.Mostregulationshaveoverlappingrequirementswithhardlyany
radicallynewpropositionstoimprovethesafetyofAIandthecurrentframeworkisbasedonthesegeneralrequirements.
●Humanoversight:EnsurethatAIsaresubjecttohumanoversightandcontrol,withmechanismsinplacetoenablehumaninterventionanddecision-makingwhennecessary.Humanoversight
mustbecoupledwithautomatedmonitoringastheprimarystep,withhumanoversightbeingcalledinforspecificallyidentifiedusecaseswherehumaninterventionisnecessary.Thismakesthisguidancescalableandpracticalapplicable.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Safetyandreliability:PrioritizesafetyandreliabilityinAItechnologytominimizetheriskofharmtoindividualsorsociety.Thisisachievedthroughrigoroustesting,validation,risk
assessmentprocesses,andtheimplementationofmechanismsinplaceforakill-switchorrecourseincaseoffailure.
●Ethicalconsiderations:EnsureAIadherestoethicalprinciples,respectshumanrights,andpromotesfairness.
●Dataprivacyandsecurity:Enhanceddataprotectionandsecuritymeasuresshouldbe
implementedtoprotectsensitiveinformationandprivacy,preventingunauthorizedaccessormisuseofdata.Duringthedesignphases,privacy-by-designandsecurity-by-designfocusonmitigatingrisksearlyintheprocess(reflectingshift-leftinDevSecOps).Thislimitsbolt-on
securityandunforeseenriskexposureinthefinalproduct.
●AIModelandDataConsiderations:
●Biasmitigation:AddressbiasesindataandalgorithmdesignandregularlymonitorandevaluateAIsystemsforbiasanddiscrimination.Biasisacomplextopicthatbalances
necessaryinformationandalgorithmswiththeriskofstereotypicclassification.
●Transparency:EnsuretransparencyinAIbyclearlyexplaininghowitworks,includingthealgorithmsandfactorsinfluencingtheirdecisions.ImplementingXAI(explainableAI)
[2]
,
[3]
helpstofostertrustandbuildthefoundationofinformeddecisionswhileuncoveringpossiblebias.Inhealthcare,thisiscrucialandacknowledged.Regardlessoftheindustry,theusershouldbeinformediftheoutputwasproducedbyAI.
●Consistency:ConsistentdataensuresthattheAImodellearnsfromaccurateand
reliableexamples.Thisiscrucialforthemodeltogeneratecorrectandusefuloutputs.Inconsistentorconflictingdatacanconfusethemodel,leadingtoinaccuraciesinthegeneratedtextorinformation.
●Accountability:Establishmechanismsforaccountabilityandresponsibilityinthedesign,development,deployment,anduseofAI,includingclearlinesofresponsibilityfor
addressinganyissuesthatmayarise.Currently,theresponsibilityforpreventingharmtotheend-userprimarilyfallsontheAIapplicationprovideralone.Additionalmeasures,
suchasmanualsor“modelcards”
[4]
andspecificusertraining,couldhighlightashared
responsibilitybetweentheproviderandtheenduserandoutlinethedegreeoftransparencythattheendusercanexpect.
●Robustness:DevelopAIthatiswelldesignedandresilienttoadversarialattacks,dataperturbations,andotherformsofinterferenceormanipulation.Thispaperproposesanewperspectivetoevaluaterobustnesstoenhanceglobalsafety.
●Compliancewithregulations:Ensurecompliancewithrelevantlaws,regulations,andstandardsgoverningthedevelopmentanddeploymentofAIapplicationsincluding,butnotlimitedto,dataprotectionalsoregardingthetradingofdata,privacy,andsafety.
AdoptinganapproachgroundedinsharedresponsibilityacrossthehighlycomplexsupplyandvaluechainiscrucialtoensuringthecreationofsafeandtrustworthyAI.Thisinvolvesatleastthetechnicalteam,thecomplianceteam,thelegalteamand,dependingonspecificfactors,manyotherteamsaswell.TheWhiteHouseMemorandumfrom28March2024
[5]
requeststhatallagenciesmustdesignateaChiefAIOfficer(CAIO)within60days.Thisroleallowsstrategicandpurposefulmanagementandalignmentofall
involvedteamstotransform“sharedresponsibility”intoatraceablemeasurement.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
TheLandscapeofAI
Inthischapter,anoverviewisgiventointroduceAIwithabriefhistory,AItechnologies,andtraining
methods.Todiscusstheimportanceofdataisbeyondthescopeofthisoverviewbutitisacknowledgedthatitisanextremelyimportanttopicandisaddressedin-depthbyotherCSAWorkgroups.
ABriefHistoryofAI
BelowaresomemilestonesofArtificialIntelligencelisted,notconsideringaspecificperspectivebutgivinganoverviewofthemajordevelopmentsinthisfield.
Figure1:HistoryofArtificialIntelligence
[6]
2018:BERT:IntroducedbyGoogle,thismodelrevolutionizedlanguageunderstanding.BERT'suseoftheTransformerarchitectureandpre-trainingonmassivetextdatasetsenabledittooutperformprevious
modelsinvariouslanguagetasks.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
2019:GTP-2with1.5billionparameters
2020:LLMswith175billion-530billionparameters
2021:LLMswithuptoatrillionparametersfocusingonimprovingefficiencyintrainingandhandlingcomplextaskswithadvancedreasoningandfactualaccuracy.
2022:ChatGTP-3goesviral
Beyondsize:researchersareworkingnowonefficiencyintraining,alignmentwithhuman’svalue,safetyandmultimodality(incorporatingimages,audio,andotherdatatypes).
ThisbriefhistoryofAIdemonstratestheevolutionfromthemostbasiccalculatortoGenAIwithArtificialGeneralIntelligencestillonthehorizon.
TheLandscapeofAI
DifferentAItechnologiesarepresentedanddiscussed.
MachineLearning(ML)
MachineLearningisabranchofAIandcomputersciencethatfocusesonusingdataandalgorithmstoimitatehumanlearning,graduallyimprovingamodel’saccuracy
[7]
.
TinyMachineLearning(tinyML)
TinyMachineLearningisbroadlydefinedasafieldofMachineLearningtechnologiesandapplicationsthatincludehardware(dedicatedintegratedcircuits),algorithms,andsoftwarecapableofperformingon-devicesensordataanalyticsatextremelylowpower,typicallyinthemWrangeandbelow,enablingavarietyofalways-onusecasesandtargetingbatteryoperateddevices
[8]
,suchasInternetofThings
(IoT)devices.
DeepLearning(AdvancedML)
DeepLearningisamethodinAIthatteachescomputerstoprocessdatainawaythatisinspiredbythehumanbrain.DeepLearningmodelscanrecognizecomplexpatternsinpictures,text,sounds,andotherdatatoproduceaccurateinsightsandpredictionsusingneuralnetworks.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
GenerativeArtificialIntelligence(GenAI)
GenerativeArtificialIntelligencereferstodeep-learningortransformermodelsthatcantakerawdataand“l(fā)earn”togeneratestatisticallyprobableoutputswhenprompted.Unliketheaboveclassificatorymodelsthatareprimarilyusedforclassificationandpatternrecognitiontasks,GenerativeAImodelsareusedforsynthesisofdata,matchinghigh-orderpatternsoflearningdataand/orpredictiveanalytics.Atahigh
level,generativemodelsencodeasimplifiedrepresentationoftheirtrainingdataandpredictthenextsetsimilar,butnotidenticalto,theoriginaldata
[9]
.
ArtificialGeneralIntelligence(AGI)
ArtificialGeneralIntelligenceisatheoreticalformofAIusedtodescribeacertainmindsetofAI
development.Itinvolvesanintelligenceequal(orsuperior)tohumansandaself-awareconsciousnessthatcanlearnandsolvecomplexproblems,andplanforthefuture
[10]
.
TheLandscapeofTrainingMethods
ArtificialIntelligencecanbegroupedintothefollowingtypes
[11]
:
Figure2:TypesofMachineLearning
SupervisedLearning
SupervisedLearningisastyleofMachineLearningwherealgorithmslearnfrom“l(fā)abeleddata”.Itisusedforclassificationandregressionproblems.“Labeleddata”providesknowninputsanddesiredoutputs,allowingthealgorithmtoidentifypatternsandbuildamodelforpredictingoutcomesonpreviously
unseendata.
Exampleforclassificationalgorithms:decisiontrees,randomforests,linearclassifiers,andsupportvectormachines.
Exampleforregressionalgorithms:linearregression,multivariateregression,regressiontrees,andlassoregression.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
UnsupervisedLearning
UnsupervisedLearningisastyleofMachineLearningwherealgorithmsanalyzeunlabeleddata.Thegoalistodiscoverhiddenpatterns,groupings,patterns,orinsightswithinthedatawithoutpredetermined
outcomes.Aproperlytrainedmodelisabletomakepredictionsusingunseendata.
Examplealgorithms:k-means,k-medoids,hierarchicalclustering,Apriori,andFPGrowth.
ReinforcedLearning
ReinforcedLearningisastyleofMachineLearningwhereanagentinteractswithanenvironmentand
learnsthroughtrialanderror.Theagentreceivesrewardsorpenaltiesbasedonitsactions,allowingittoadjustitsbehaviorandoptimizeitsdecision-makingprocessovertime.
Examplealgorithms:ReinforcedLearning,MarkovDecisionProcess,Q-learning,PolicyGradientMethod,andActor-Critic,butmanymoreexist.
Semi-supervisedLearning
Semi-supervisedLearningbridgesthegapbetweensupervisedandunsupervisedlearning.Itutilizesasmallamountoflabeleddataalongsidealargerpoolofunlabeleddata.Thisapproachisvaluablewhenobtaininglabeleddataiscostlyortime-consumingsinceitallowsthemodeltoleveragepatternsfoundwithintheunlabeleddataaswell.
Self-supervisedLearning
Self-supervisedLearningisaformofUnsupervisedLearningwherethemodelgeneratesitsownlabelsfromtherawinputdata.Itachievesthisthroughtechniqueslikepredictingmaskedwordsinasentenceor
predictingthenextframeinavideosequence.Thisallowsforlearningrobust,generalizablerepresentationsofdataevenwithouthuman-providedlabels.
FederatedLearning
FederatedLearningisanadvancedMachineLearningtechniquedesignedtotrainalgorithmsacross
decentralizeddevicesorserversholdinglocaldatasamples,withoutexchangingthem.Thismethod
addressessignificantconcernsrelatedtoprivacy,security,anddatacentralizationbykeepingsensitivedataontheuser'sdevice,ratherthantransferringthedatatoacentralserverforprocessing(Figure3).Thismethod,introducedin2016,allowsdataprivacytobepreservedtoagreaterextentbysharingonlyparameters,notdata.FederatedLearningoffersaframeworktojointlytrainaglobalmodelusingdata
setsstoredinseparateclients.Thisoffersagoodoptionforindustrieswhereprivacyiscrucial,asoriginaldataisconsideredimpossibletorecover
[12]
.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
Figure3:ArchitectureforaFederatedLearningsystem
[12]
Anotheradvantageofthismodel,notdiscussedintheabovepaper
[12]
,istheabilitytoleveragethe
“wisdomofthecrowd”
[13]
.Neuronsinthehumanbrainapplythisconcepttoproduceexactinformationfromnon-deterministicneuralprocesses.
Currently,FederatedLearningseemstohavethepotentialtointegrateprivacy,performance,androbustnessbasedondiversity.Thislearningmethodisnotdiscussedmuch,butitispromisingin
industriesorapplicationswheredataprivacyandconfidentialityareparamountandalsohelpsaddresstheissuesarounddataresidency.
However,therearealsopotentialprivacyconcernswithFederatedLearningincludingtheriskofmalicioususersdisruptingmodelaggregation,whichcanimpactmodelaccuracyorleadtoprivacydisclosures.
Attackscantargetmodelupdatessharedduringtraining,possiblyallowingfortheextractionofrawtrainingdata.Toaddresstheseconcerns,researchersproposeprivacy-preservingtechniqueslike
differentialprivacy,distributedencryption,andzero-knowledgeprooftosafeguarddataandfilteroutanomaliesfrommaliciousactors.FederatedLearning,likeanyotherlearningmethod,requiresthat
adequatecybersecuritymeasuresareinplace.
TrainingMethodsRegulationsandEthicalConsiderations
WhiletherearenospecificregulationsgoverningMLtraining,itisimpactedbythemajorregulatoryframeworks,includingtheGeneralDataProtectionRegulation(GDPR),theEUAIAct,andthe
OrganisationforEconomicCo-operationandDevelopment(OECD)principlesonAI.Further,regulationsgoverningMachineLearning(ML)andartificialintelligence(AI)trainingarerapidlyevolvingas
technologyadvancesandarecoveredin“
PrinciplestoPractice:ResponsibleAIinaDynamicRegulatory
Environment
”.Additionally,manygovernmentbodiesareactivelydevelopingregulationsandfacilitatingcooperativeindustryeffortstothesameeffect.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
RegulationsgoverningMachineLearning(ML)andartificialintelligence(AI)havesignificantimplicationsfordatamonetizationandtheuseofAItoguidebusinessdecisions.Theseeffectsmanifestinvarious
ways,includingoperationalchanges,strategicadjustments,andethicalconsiderations,aswellas
limits/requirementsondatacollectionanduse,bias,anddataquality.Certainplatforms,forexample,haveforbiddentheusageoftheirdataforAItrainingpurposes(suchasX:“crawlingorscrapingthe
Servicesinanyform,foranypurposewithoutourpriorwrittenconsentisexpresslyprohibited”
[14]
)orhavesolditunderalicensingagreement(suchasReddit
[15]
).
Meetingregulatoryrequirementscanintroducesignificantcompliancecosts,especiallyforbusinesses
operatingacrossmultiplejurisdictions.Despitethechallenges,regulationsalsoofferopportunities.
Businessesthatadeptlynavigatetheregulatorylandscapecandifferentiatethemselvesbyofferingmoresecure,transparent,andethicalAIsolutions.Thiscanappealtoincreasinglyprivacy-consciousconsumersandpartners,potentiallyopeningnewmarketsorcreatingstrongercustomerloyalty.
Licensing,Patenting&CopyrightofAITechnology
ManyMachineLearningframeworksandlibrariesfollowtheOpenSourceInitiativeLicensing,suchasApache2.0
[16]
orMIT
[17]
.Certainlicensingmightforbidcommercialuseoftheresultingapplication.
TheEuropeanPatentOffice’s(EPO)revisedGuidelinesforExamination
[18]
,
[19]
havebeenmadepublicandincludeafewsignificantchangestotheEPO’sprocedureforreviewinginnovationsinthedomainsofMLandAI.RecentamendmentsmandatethatapplicantsforAIorMLinventionsfurtherelucidate
mathematicaltechniquesandtraininginput/datainamannerthoroughenoughtoreplicatethetechnicalresultoftheinventionovertheentiretyoftheclaim.Thearticlecitedbelowstatesthat“caselawsuggeststhatthestructureofanyneuralnetworksused,theirtopology,activationfunctions,endconditions,and
learningmechanismareallrelevanttechnicaldetailsthatanapplicationmightneedtodisclose”.Thisarticle
[20]
summarizesfurtherimplicationsandexpoundsonthistopic.
OnJanuary23,2024,theJapanAgencyforCulturalAffairs(ACA)releaseditsdraft“ApproachtoAIandCopyright”forpubliccomment,toclarifyhowingestionandoutputofcopyrightedmaterialsinJapan
shouldbeconsidered.OnFebruary29,2024,afterconsideringnearly25,000comments,additional
changesweremade.Thisdocument,createdbyanACAcommittee,willlikelybeadoptedbytheACAinthenextfewweeks.Thisarticle
[21]
providesasummaryofthekeypointsofthedraftitselfandas
modified.
TherearedisputesaboutcopyrightinSingapore
[22]
;thisiscurrentlyaveryvolatilefield.Itisfurtheraddressedinalsoin“
PrinciplestoPractice:ResponsibleAIinaDynamicRegulatoryEnvironment
”.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
PartII:Real-WorldCaseStudiesandIndustryChallenges
Inthispart,afewindustr
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《動(dòng)脈瘤性骨囊腫》課件
- 軸承品牌框架合同范例
- 鍍鋅水槽轉(zhuǎn)讓合同范例
- 購(gòu)房意向定金合同范例
- 酒店廚師長(zhǎng)期雇傭合同范例
- 技術(shù)參股合同范例
- 消防銷(xiāo)售合同范例
- 個(gè)人購(gòu)買(mǎi)別墅合同范例
- 服裝租賃合同范例范例pdf
- 農(nóng)村田地運(yùn)貨合同范例
- 偉大的《紅樓夢(mèng)》智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京大學(xué)
- 2024年中儲(chǔ)糧集團(tuán)招聘筆試參考題庫(kù)附帶答案詳解
- 24春國(guó)家開(kāi)放大學(xué)《地域文化(本)》形考任務(wù)1-4參考答案
- 高等數(shù)學(xué)(高職教育)全套教學(xué)課件
- 瑞幸咖啡品牌營(yíng)銷(xiāo)策略研究報(bào)告
- 醫(yī)學(xué)科研的道德與倫理
- 小學(xué)一年級(jí)上冊(cè)數(shù)學(xué)口算訓(xùn)練題
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末考試物理試題
- 期末試卷-2023-2024學(xué)年語(yǔ)文六年級(jí)上冊(cè)統(tǒng)編版
- 2024年1月國(guó)開(kāi)電大法律事務(wù)專(zhuān)科《法律咨詢(xún)與調(diào)解》期末考試試題及答案
- 快速響應(yīng)客戶需求機(jī)制
評(píng)論
0/150
提交評(píng)論