




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
III.Artificialintelligenceandtheeconomy:implicationsforcentralbanks
Keytakeaways
?Machinelearningmodelsexcelatharnessingmassivecomputingpowertoimposestructureonunstructureddata,givingrisetoartificialintelligence(AI)applicationsthathaveseenrapidandwidespreadadoptioninmanyfields.
?TheriseofAIhasimplicationsforthefinancialsystemanditsstability,aswellasformacroeconomicoutcomesviachangesinaggregatesupply(throughproductivity)anddemand(throughinvestment,consumptionandwages).
?CentralbanksaredirectlyaffectedbyAI’simpact,bothintheirroleasstewardsofmonetaryandfinancialstabilityandasusersofAItools.Toaddressemergingchallenges,theyneedtoanticipateAI’seffectsacrosstheeconomyandharnessAIintheirownoperations.
?Dataavailabilityanddatagovernancearekeyenablingfactorsforcentralbanks’useofAI,andbothrelyoncooperationalongseveralfronts.Centralbanksneedtocometogetherandfostera“communityofpractice”toshareknowledge,data,bestpracticesandAItools.
Introduction
Theadventoflargelanguagemodels(LLMs)hascatapultedgenerativeartificialintelligence(genAI)intopopulardiscourse.LLMshavetransformedthewaypeopleinteractwithcomputers–awayfromcodeandprogramminginterfacestoordinarytextandspeech.ThisabilitytoconversethroughordinarylanguageaswellasgenAI’shuman-likecapabilitiesincreatingcontenthavecapturedourcollectiveimagination.
Belowthesurface,theunderlyingmathematicsofthelatestAImodelsfollowbasicprinciplesthatwouldbefamiliartoearliergenerationsofcomputerscientists.Wordsorsentencesareconvertedintoarraysofnumbers,makingthemamenabletoarithmeticoperationsandgeometricmanipulationsthatcomputersexcelat.
Whatisnewistheabilitytobringmathematicalorderatscaletoeverydayunstructureddata,whethertheybetext,images,videosormusic.RecentAIdevelopmentshavebeenenabledbytwofactors.Firstistheaccumulationofvastreservoirsofdata.ThelatestLLMsdrawonthetotalityoftextualandaudiovisualinformationavailableontheinternet.Secondisthemassivecomputingpowerofthelatestgenerationofhardware.TheseelementsturnAImodelsintohighlyrefinedpredictionmachines,possessingaremarkableabilitytodetectpatternsindataandfillingaps.
Thereisanactivedebateonwhetherenhancedpatternrecognitionissufficienttoapproximate“artificialgeneralintelligence”(AGI),renderingAIwithfullhuman-likecognitivecapabilities.IrrespectiveofwhetherAGIcanbeattained,theabilitytoimposestructureonunstructureddatahasalreadyunlockednewcapabilitiesinmanytasksthateludedearliergenerationsofAItools.1ThenewgenerationofAImodelscouldbeagamechangerformanyactivitiesandhaveaprofoundimpactonthebroadereconomyandthefinancialsystem.Notleast,thesesamecapabilities
BISAnnualEconomicReport202491
canbeharnessedbycentralbanksinpursuitoftheirpolicyobjectives,potentiallytransformingkeyareasoftheiroperations.
TheeconomicpotentialofAIhassetoffagoldrushacrosstheeconomy.TheadoptionofLLMsandgenAItoolsisproceedingatsuchbreathtakingspeedthatiteasilyoutpacespreviouswavesoftechnologyadoption(Graph1.A).Forexample,ChatGPTalonereachedonemillionusersinlessthanaweekandnearlyhalfofUShouseholdshaveusedgenAItoolsinthepast12months.Mirroringrapidadoptionbyusers,firmsarealreadyintegratingAIintheirdailyoperations:globalsurveyevidencesuggestsfirmsinallindustriesusegenAItools(Graph1.B).Todoso,theyareinvestingheavilyinAItechnologytotailorittotheirspecificneedsandhaveembarkedonahiringspreeofworkerswithAI-relatedskills(Graph1.C).Mostfirmsexpectthesetrendstoonlyaccelerate.2
Thischapterlaysouttheimplicationsofthesedevelopmentsforcentralbanks,whichimpingeonthemintwoimportantways.
First,AIwillinfluencecentralbanks’coreactivitiesasstewardsoftheeconomy.Centralbankmandatesrevolvearoundpriceandfinancialstability.AIwillaffectfinancialsystemsaswellasproductivity,consumption,investmentandlabourmarkets,whichthemselveshavedirecteffectsonpriceandfinancialstability.WidespreadadoptionofAIcouldalsoenhancefirms’abilitytoquicklyadjustpricesinresponsetomacroeconomicchanges,withrepercussionsforinflationdynamics.Thesedevelopmentsarethereforeofparamountconcerntocentralbanks.
Second,theuseofAIwillhaveadirectbearingontheoperationsofcentralbanksthroughitsimpactonthefinancialsystem.Forone,financialinstitutionssuchascommercialbanksincreasinglyemployAItools,whichwillchangehowtheyinteractwithandaresupervisedbycentralbanks.Moreover,centralbanksandotherauthoritiesarelikelytoincreasinglyuseAIinpursuingtheirmissionsinmonetarypolicy,supervisionandfinancialstability.
TheadoptionofAI1Graph1
A.TheadoptionofAIishappeningfast…
80
60
40
20
0
02468101214161820
%ofUShouseholds
Yearssinceintroduction
ChatGPT
SocialmediaElectricpower
SmartphoneInternet
Computer
B.…andinallsectors…
l
Advancedindustrie Business,legalandprofessionalserviceConsume
goods/retaiEnergyandmaterial
s
s
r
s
s
s
a
a
s
Financialservice Healthcare,pharmandmedicalproduct Technology,mediandtelecom
0255075100%ofrespondents
ExposuretogenerativeAItools:
Regularuser
OccasionaluserNoexposure
C.…whileinvestmentsinAI
companiesandjobopeningssoar
250
1.5
200
1.2
150
0.9
100
0.6
USDbn%oftotaljobpostings
50
0.3
0
0.0
12141618202224
CapitalinvestedinAIcompanies(lhs)PercentageofAIjobpostings(rhs):
Mean
Interquartilerange
1Seetechnicalannexfordetails.
Sources:Allcot(2023);CominandHobijn(2004);Maslejetal(2024);McKinsey&Company(2023);IMF,WorldEconomicOutlook;USCensusBureau,CurrentPopulationSurvey;InternationalTelecommunicationUnion(ITU);PitchBookDataInc;OurWorldinData;Statista,DigitalMarketInsights;BIS.
92BISAnnualEconomicReport2024
Overall,therapidandwidespreadadoptionofAIimpliesthatthereisanurgentneedforcentralbankstoraisetheirgame.Toaddressthenewchallenges,centralbanksneedtoupgradetheircapabilitiesbothasinformedobserversoftheeffectsoftechnologicaladvancementsaswellasusersofthetechnologyitself.Asobservers,centralbanksneedtostayaheadoftheimpactofAIoneconomicactivitythroughitseffectsonaggregatesupplyanddemand.Asusers,theyneedtobuildexpertiseinincorporatingAIandnon-traditionaldataintheirownanalyticaltools.Centralbankswillfaceimportanttrade-offsinusingexternalvsinternalAImodels,aswellasincollectingandprovidingin-housedatavspurchasingthemfromexternalproviders.Togetherwiththecentralityofdata,theriseofAIwillrequirearethinkofcentralbanks’traditionalrolesascompilers,usersandprovidersofdata.ToharnessthebenefitsofAI,collaborationandthesharingofexperiencesemergeaskeyavenuesforcentralbankstomitigatethesetrade-offs,inparticularbyreducingthedemandsoninformationtechnology(IT)infrastructureandhumancapital.Centralbanksneedtocometogethertoforma“communityofpractice”toshareknowledge,data,bestpracticesandAItools.
ThechapterstartswithanoverviewofdevelopmentsinAI,providingadeepdiveintotheunderlyingtechnology.ItthenexaminestheimplicationsoftheriseofAIforthefinancialsector.ThediscussionincludescurrentusecasesofAIbyfinancialinstitutionsandimplicationsforfinancialstability.Italsooutlinestheemergingopportunitiesandchallengesandtheimplicationsforcentralbanks,includinghowtheycanharnessAItofulfiltheirpolicyobjectives.ThechapterthendiscusseshowAIaffectsfirms’productivecapacityandinvestment,aswellaslabourmarketsandhouseholdconsumption,andhowthesechangesinaggregatedemandandsupplyaffectinflationdynamics.Thechapterconcludesbyexaminingthetrade-offsarisingfromtheuseofAIandthecentralityofdataforcentralbanksandregulatoryauthorities.Indoingso,ithighlightstheurgentneedforcentralbankstocooperate.
Developmentsinartificialintelligence
Artificialintelligenceisabroadterm,referringtocomputersystemsperformingtasksthatrequirehuman-likeintelligence.WhiletherootsofAIcanbetracedbacktothelate1950s,theadvancesinthefieldofmachinelearninginthe1990slaidthefoundationsofthecurrentgenerationofAImodels.Machinelearningisacollectivetermreferringtotechniquesdesignedtodetectpatternsinthedataandusetheminpredictionortoaiddecision-making.3
Thedevelopmentofdeeplearninginthe2010sconstitutedthenextbigleap.Deeplearningusesneuralnetworks,perhapsthemostimportanttechniqueinmachinelearning,underpinningeverydayapplicationssuchasfacialrecognitionorvoiceassistants.Themainbuildingblockofneuralnetworksisartificialneurons,whichtakemultipleinputvaluesandtransformthemtooutputasasetofnumbersthatcanbereadilyanalysed.Theartificialneuronsareorganisedtoformasequenceoflayersthatcanbestacked:theneuronsofthefirstlayertaketheinputdataandoutputanactivationvalue.Subsequentlayersthentaketheoutputofthepreviouslayerasinput,transformitandoutputanothervalue,andsoforth.Anetwork’sdepthreferstothenumberoflayers.Morelayersallowneuralnetworkstocaptureincreasinglycomplexrelationshipsinthedata.Theweightsdeterminingthestrengthofconnectionsbetweendifferentneuronsandlayersarecollectivelycalledparameters,whichareimproved(knownaslearning)iterativelyduringtraining.Deepernetworkswithmoreparametersrequiremoretrainingdatabutpredictmoreaccurately.
Akeyadvantageofdeeplearningmodelsistheirabilitytoworkwithunstructureddata.Theyachievethisby“embedding”qualitative,categoricalorvisualdata,such
BISAnnualEconomicReport202493
aswords,sentences,proteinsorimages,intoarraysofnumbers–anapproachpioneeredatscalebytheWord2Vecmodel(seeBoxA).Thesearraysofnumbers(ievectors)areinterpretedaspointsinavectorspace.Thedistancebetweenvectorsconveyssomedimensionofsimilarity,enablingalgebraicmanipulationsonwhatisoriginallyqualitativedata.Forexample,thevectorlinkingtheembeddingsofthewords“big”and“biggest”isverysimilartothatbetween“small”and“smallest”.Word2Vecpredictsawordbasedonthesurroundingwordsinasentence.Thebodyoftextusedfortheembeddingexerciseisdrawnfromtheopeninternetthroughthe“commoncrawl”database.Theconceptofembeddingcanbetakenfurtherintomappingthespaceofeconomicideas,uncoveringlatentviewpointsormethodologicalapproachesofindividualeconomistsorinstitutions(“personas”).Thespaceofideascanbelinkedtoconcretepolicyactions,includingmonetarypolicydecisions.4
TheadventofLLMsallowsneuralnetworkstoaccessthewholecontextofawordratherthanjustitsneighbourinthesentence.UnlikeWord2Vec,LLMscannowcapturethenuancesoftranslatinguncommonlanguages,answerambiguousquestionsoranalysethesentimentoftexts.LLMsarebasedonthetransformermodel(seeBoxB).Transformersrelyon“multi-headedattention”and“positionalencoding”mechanismstoefficientlyevaluatethecontextofanywordinthedocument.Thecontextinfluenceshowwordswithmultiplemeaningsmapintoarraysofnumbers.Forexample,“bond”couldrefertoafixedincomesecurity,aconnectionorlink,orafamousespionagecharacter.Dependingonthecontext,the“bond”embeddingvectorliesgeometricallyclosertowordssuchas“treasury”,“unconventional”and“policy”;to“family”and“cultural”;orto“spy”and“martini”.ThesedevelopmentshaveenabledAItomovefromnarrowsystemsthatsolveonespecifictasktomoregeneralsystemsthatdealwithawiderangeoftasks.
LLMsarealeadingexampleofgenAIapplicationsbecauseoftheircapacitytounderstandandgenerateaccurateresponseswithminimalorevennopriorexamples(so-calledfew-shotorzero-shotlearningabilities).GenAIreferstoAIscapableofgeneratingcontent,includingtext,imagesormusic,fromanaturallanguageprompt.Thepromptscontaininstructionsinplainlanguageorexamplesofwhatuserswantfromthemodel.BeforeLLMs,machinelearningmodelsweretrainedtosolveonetask(egimageclassification,sentimentanalysisortranslatingfromFrenchtoEnglish).Itrequiredtheusertocode,trainandrolloutthemodelintoproductionafteracquiringsufficienttrainingdata.Thisprocedurewaspossibleforonlyselectedcompanieswithresearchersandengineerswithspecificskills.AnLLMhasfew-shotlearningabilitiesinthatitcanbegivenataskinplainlanguage.Thereisnoneedforcoding,trainingoracquiringtrainingdata.Moreover,itdisplaysconsiderableversatilityintherangeoftasksitcantakeon.Itcanbeusedtofirstclassifyanimage,thenanalysethesentimentofaparagraphandfinallytranslateitintoanylanguage.Therefore,LLMsandgenAIhaveenabledpeopleusingordinarylanguagetoautomatetasksthatwerepreviouslyperformedbyhighlyspecialisedmodels.
ThecapabilitiesofthemostrecentcropofAImodelsareunderpinnedbyadvancesindataandcomputingpower.Theincreasingavailabilityofdataplaysakeyroleintrainingandimprovingmodels.Themoredataamodelistrainedon,themorecapableitusuallybecomes.Furthermore,machinelearningmodelswithmoreparametersimprovepredictionswhentrainedwithsufficientdata.Incontrasttothepreviousconventionalwisdomthat“over-parameterisation”degradestheforecastingabilityofmodels,morerecentevidencepointstoaremarkableresilienceofmachinelearningmodelstoover-parameterisation.Asaconsequence,LLMswithwelldesignedlearningmechanismscanprovidemoreaccuratepredictionsthantraditionalparametricmodelsindiversescenariossuchascomputervision,signalprocessingandnaturallanguageprocessing(NLP).5
94BISAnnualEconomicReport2024
BoxA
Wordsasvectors:aprimeronembeddings
Modernmachinelearningmethodsexcelatimposingmathematicalstructureonunstructureddata,allowingmassivecomputingpowertobeunleashedinprocessinginformation.Themappingthatimposessuchstructureisknownasan“embedding”,andthecanonicalexampleistheembeddingofwordsaspointsinavectorspace,sothateachwordisassociatedwithanarrayofnumbers.
alligatorhawk
turtle
hong-kongmontrealtoronto
glassesrobetiara
dwarf
impunicorn
christopherjosephpeyton
businessmanjudge
psychiatristboxing
jogging sleddingarkansasmarylandoregon
cloudmonsoon typhoon
AnearlyexampleofwordembeddingisWord2Vec,1whichmapsawordtoanembeddingvectorofafewhundreddimensionsthatislearnedbyaneuralnetwork.Theneuralnetworkisrefinedbybeingaskedtopredictthecentrewordinashortwindowoftext(typicallyfourtoeightwordsbeforeandafterthecentreword)andbeingscoredbyitssuccessrate.Thisprocedureisknownasthe“ContinuousBagofWords”methodbecauseallsurroundingwordsarefirstaddedintoasinglevector.TheWord2Veclearningalgorithmcomputesthepredictionerroroverallthewordsinacorpus(whichcanbetrillionsofwords)anditerativelyadjuststheembeddingvectorforeachwordtoreducethisclassificationerrorandoptimiseprediction.
Embeddingdistancesbetween420wordsinninecategoriesofwords1
GraphA1
hawk
alligator
turtle
hong-kongmontrealtoronto
Selectedwords
scale:
-1-0.500.51
1Cosinesimilaritymatrixbetween420words.Thevaluerangesfrom–1(completelydissimilar)to1(completelysimilar),with0indicatingorthogonality(nosimilarity).They-axislabelscorrespondtoselected420words;theaxislabelsindicatethecategoriestowhichthesewordsbelong.
Source:AdaptedfromGrandetal(2022).
Theseproceduresresultinsimilarembeddingsforwordswithsimilarmeaning,inthesensethatthedistancebetweenthevectorsrepresentingthetwowordsismathematicallyclose.Forexample,theembeddingoftheword“cat”isclosetothatoftheword“mouse”,andthatof“Mexico”closeto“Indonesia”.GraphA1illustratesthe“cosinesimilarity”between420wordsinninedifferentwordcategories(animals,citiesetc).
BISAnnualEconomicReport202495
Cosinesimilaritymeasuresthecosineoftheanglebetweentwonon-zerovectors,reflectinghowsimilartheirdirectionsare.Itcalculatesthedotproductofthevectorsdividedbytheproductoftheirnorms.Thevaluerangesfrom–1(completelydissimilar)to1(completelysimilar),with0indicatingorthogonality(nosimilarity).InGraphA1,thecolourschemeindicatesthedegreeofsimilaritybetweenwordpairs.Thediagonalofthismatrixconsistsof1everywhere,asthediagonalmeasureseachword’ssimilaritywithitself.Darkerredindicateshighcosinesimilarity,whilelighterredindicateslowsimilarity.GraphA1showsthatwordsfromthesamecategory(eganimals)haveahighcosinesimilarity,whiletheyhavelowcosinesimilaritywithwordsfromothercategories(egcitiesorsports).Theresultingvectorsgiverisetoembeddingsthatcanbeusedinvariousnaturallanguageprocessingtaskssuchastextclassification,sentimentanalysisandmachinetranslationwithminimalornohuman-labelleddata.
Theembeddingsuncoverthemathematicalrelationshipsbetweenwords.Notonlyaresimilarwords
placedclosertogetherinthevectorspace,butthesemanticconnectionsarealsocapturedthroughthe
mathematicalrelationshipsbetweenthevectorembeddingofeachword.Forinstance,analogieslike“manis
towomanaskingisto?”canbesolveddirectlyfromvectoradditionandsubtractionoperations:queen=
woman+king–man.Theseembeddingrelationshipsalsoapplytothelinkbetweencountriesandtheir
capitals(Quito=Ecuador+Oslo–Norway),opposites(unethical=ethical+impossibly–possibly),andthe
tenseofwords(swam=swimming+walked–walking).Semanticrelationshipsbetweenwordscanalsobe
projectedtoconcepts.GraphA2illustrateshowbyprojectingthewordembeddingsofanimalstothevector
representingvariationinsize(iethedifferencebetweenthewordembeddingfor“l(fā)arge”and“small”),the
animalsaremostlysortedaccordingtotheirsizes.
Embeddingprojectionofanimalwordsontosizeconceptvector1GraphA2
oc
,horsehicken
otiger
moose
large
5
ha
mster
d
mosquitoogo
salmon
r
hino
0
mouse
gold?sh
butt
er?y
dolphin
–5
sm
●
all
bee·duck
whale
–10–5051015
1Two-dimensionalillustration,astheembeddingsareina300-dimensionalvectorspace.Source:AdaptedfromGrandetal(2022).
Word2Vechassubsequentlybeensupersededbyothermethodsthatachievemoremeaningfulembedding,suchasGloVe,ELMo,BERTandGPT,2byemployingmoresophisticatedlearningofconceptswithmorecomplexneuralnetworkarchitectures.Thelatestmodels(BERTandGPT)relyonthetransformerarchitecture(seeBoxB).BERTandGPTarereferredtoaslanguagemodels,notwordembeddings.Theyusethewholetextascontext,multiplepathstocapturedifferentmeaningsandneuralnetworkswithtrillionsoftunableparameters.
1Mikolovetal(2013)2Penningtonetal(2014),Petersetal(2018),Devlinetal(2018)andBrownetal(2019).
96BISAnnualEconomicReport2024
Animplicationisthatmorecapablemodelstendtobelargermodelsthatneedmoredata.Biggermodelsandlargerdatasetsthereforegotogetherandincreasecomputationaldemands.Theuseofadvancedtechniquesonvasttrovesofdatawouldnothavebeenpossiblewithoutsubstantialincreasesincomputingpower–inparticular,thecomputationalresourcesemployedbyAIsystems–whichhasbeendoublingeverysixmonths.6Theinterplaybetweenlargeamountsofdataandcomputationalresourcesimpliesthatjustahandfulofcompaniesprovidecutting-edgeLLMs,anissuerevisitedlaterinthechapter.
SomecommentatorshavearguedthatAIhasthepotentialtobecomethenextgeneral-purposetechnology,profoundlyimpactingtheeconomyandsociety.General-purposetechnologies,likeelectricityortheinternet,eventuallyachievewidespreadusage,giverisetoversatileapplicationsandgeneratespillovereffectsthatcanimproveothertechnologies.Theadoptionpatternofgeneral-purposetechnologiestypicallyfollowsaJ-curve:itisslowatfirst,buteventuallyaccelerates.Overtime,thepaceoftechnologyadoptionhasbeenspeedingup.Whileittookelectricityorthetelephonedecadestoreachwidespreadadoption,smartphonesaccomplishedthesameinlessthanadecade.AIfeaturestwodistinctcharacteristicsthatsuggestanevensteeperJ-curve.Firstisitsremarkablespeedofadoption,reflectingeaseofuseandnegligiblecostforusers.Secondisitswidespreaduseatanearlystagebyhouseholdsaswellasfirmsinallindustries.
Ofcourse,thereissubstantialuncertaintyaboutthelong-termcapabilitiesofgenAI.CurrentLLMscanfailelementarylogicalreasoningtasksandstrugglewithcounterfactualreasoning,asillustratedinrecentBISwork.7Forexample,whenposedwithalogicalpuzzlethatdemandsreasoningabouttheknowledgeofothersandaboutcounterfactuals,LLMsdisplayadistinctivepatternoffailure.Theyperformflawlesslywhenpresentedwiththeoriginalwordingofapuzzle,whichtheyhavelikelyseenduringtheirtraining.Theyfalterwhenthesameproblemispresentedwithsmallchangesofinnocuousdetailssuchasnamesanddates,suggestingalackoftrueunderstandingoftheunderlyinglogicofstatements.Ultimately,currentLLMsdonotknowwhattheydonotknow.LLMsalsosufferfromthehallucinationproblem:theycanpresentafactuallyincorrectanswerasifitwerecorrect,andeveninventsecondarysourcestobackuptheirfakeclaims.Unfortunately,hallucinationsareafeatureratherthanabuginthesemodels.LLMshallucinatebecausetheyaretrainedtopredictthestatisticallyplausiblewordbasedonsomeinput.Buttheycannotdistinguishwhatislinguisticallyprobablefromwhatisfactuallycorrect.
Dotheseproblemsmerelyreflectthelimitsposedbythesizeofthetrainingdatasetandthenumberofmodelparameters?Ordotheyreflectmorefundamentallimitstoknowledgethatisacquiredthroughlanguagealone?OptimistsacknowledgecurrentlimitationsbutemphasisethepotentialofLLMstoexceedhumanperformanceincertaindomains.Inparticular,theyarguethattermssuchas“reason”,“knowledge”and“l(fā)earning”rightlyapplytosuchmodels.ScepticspointoutthelimitationsofLLMsinreasoningandplanning.TheyarguethatthemainlimitationofLLMsderivesfromtheirexclusiverelianceonlanguageasthemediumofknowledge.AsLLMsareconfinedtointeractingwiththeworldpurelythroughlanguage,theylackthetacitnon-linguistic,sharedunderstandingthatcanbeacquiredonlythroughactiveengagementwiththerealworld.8
WhetherAIwilleventuallybeabletoperformtasksthatrequiredeeplogicalreasoninghasimplicationsforitslong-runeconomicimpact.AssessingwhichtaskswillbeimpactedbyAIdependsonthespecificcognitiveabilitiesrequiredinthosetasks.Thediscussionabovesuggeststhat,atleastinthenearterm,AIfaceschallengesinreachinghuman-likeperformance.Whileitmaybeabletoperformtasksthatrequiremoderatecognitiveabilitiesandevendevelop“emergent”capabilities,itisnotyetabletoperformtasksthatrequirelogicalreasoningandjudgment.
BISAnnualEconomicReport202497
BoxB
Aprimeronthetransformerarchitecture
Thetransformerarchitecture1hasbeenabreakthroughinnaturallanguageprocessing(NLP),layingthefoundationforthedevelopmentofadvancedlargelanguagemodels(LLMs)suchasBERT(BidirectionalEncoderRepresentationsfromTransformers)2andGPT(GenerativePre-trainedTransformer).3Attheheartofthetransformerarchitecturearetwoinnova
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鼻腸管非計(jì)劃性拔管的預(yù)防
- 高中語(yǔ)文《邊城》說(shuō)課
- 護(hù)理基本操作培訓(xùn)
- 餐飲部門(mén)投訴解決辦法
- 八年級(jí)上冊(cè)《科學(xué)記數(shù)法》課件與練習(xí)
- 英語(yǔ) 第四冊(cè)(五年制高職)6課件 Unit6 Green Development
- 第二章 4 單擺-2025版高二物理選擇性必修一
- 鼻咽癌病理分型
- 實(shí)戰(zhàn)演練CFA試題及答案技巧
- 鼻腸營(yíng)養(yǎng)管的護(hù)理
- 2024年湖北省公務(wù)員考試《行測(cè)》真題及答案解析
- 汽車(chē)檢測(cè)技術(shù)課件 任務(wù)三 檢測(cè)汽車(chē)經(jīng)濟(jì)性能
- 水果收貨標(biāo)準(zhǔn)
- 寶雞-英文介紹文檔
- 急診專(zhuān)科護(hù)士進(jìn)修匯報(bào)課件
- 2024兒童青少年抑郁治療與康復(fù)痛點(diǎn)調(diào)研報(bào)告
- 小學(xué)數(shù)學(xué)骨干教師專(zhuān)題講座《如何有效培養(yǎng)小學(xué)生的數(shù)學(xué)閱讀能力》
- 幼兒園小班科學(xué)小蝌蚪找媽媽課件
- 公園保潔服務(wù)投標(biāo)方案
- 隨州市公共租賃住房租賃資格申請(qǐng)表
- 10J113-1內(nèi)隔墻-輕質(zhì)條板(一)
評(píng)論
0/150
提交評(píng)論