![孝感市市級名校2024屆中考數(shù)學最后一模試卷含解析_第1頁](http://file4.renrendoc.com/view5/M00/37/25/wKhkGGZ_bMuAGMnzAAHTdgmz1FA601.jpg)
![孝感市市級名校2024屆中考數(shù)學最后一模試卷含解析_第2頁](http://file4.renrendoc.com/view5/M00/37/25/wKhkGGZ_bMuAGMnzAAHTdgmz1FA6012.jpg)
![孝感市市級名校2024屆中考數(shù)學最后一模試卷含解析_第3頁](http://file4.renrendoc.com/view5/M00/37/25/wKhkGGZ_bMuAGMnzAAHTdgmz1FA6013.jpg)
![孝感市市級名校2024屆中考數(shù)學最后一模試卷含解析_第4頁](http://file4.renrendoc.com/view5/M00/37/25/wKhkGGZ_bMuAGMnzAAHTdgmz1FA6014.jpg)
![孝感市市級名校2024屆中考數(shù)學最后一模試卷含解析_第5頁](http://file4.renrendoc.com/view5/M00/37/25/wKhkGGZ_bMuAGMnzAAHTdgmz1FA6015.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
孝感市市級名校2024屆中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.上體育課時,小明5次投擲實心球的成績如下表所示,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.02.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π3.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.4.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線5.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.6.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.7.平面直角坐標系中,若點A(a,﹣b)在第三象限內,則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.9.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.7210.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x111.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關系的圖象大致為()A. B.C. D.12.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于任意實數(shù)m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.14.若反比例函數(shù)y=的圖象位于第一、三象限,則正整數(shù)k的值是_____.15.如圖,正方形內的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內部隨意取點,那么這個點取在陰影部分的概率為.16.解不等式組請結合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.17.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.18.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.
三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.20.(6分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.21.(6分)如圖,在平面直角坐標系中,函數(shù)的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù)的圖象于點N.①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.22.(8分)如圖,在平行四邊形ABCD中,BD為對角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.23.(8分)計算:﹣|﹣2|+()﹣1﹣2cos45°24.(10分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.25.(10分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.26.(12分)某蔬菜加工公司先后兩次收購某時令蔬菜200噸,第一批蔬菜價格為2000元/噸,因蔬菜大量上市,第二批收購時價格變?yōu)?00元/噸,這兩批蔬菜共用去16萬元.(1)求兩批次購蔬菜各購進多少噸?(2)公司收購后對蔬菜進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?27.(12分)為看豐富學生課余文化生活,某中學組織學生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學生報名的統(tǒng)計結果,繪制了如下尚不完整的統(tǒng)計圖:圖1各項報名人數(shù)扇形統(tǒng)計圖:圖2各項報名人數(shù)條形統(tǒng)計圖:根據(jù)以上信息解答下列問題:(1)學生報名總人數(shù)為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統(tǒng)計圖補充完整;(4)學校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學中任意選取兩名同學去參加全市的書法比賽,求恰好選中甲、乙兩名同學的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).2、B【解析】
由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
則∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質;能夠通過作輔助線將所求的角轉移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.3、A【解析】
取CB的中點G,連接MG,根據(jù)等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.4、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.5、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.6、B【解析】
拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.7、D【解析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎題型.明確各象限中點的橫縱坐標的正負性是解題的關鍵.8、D【解析】
主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學們的空間想象能力.9、B【解析】
根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.10、D【解析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結論.【詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關鍵.11、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.12、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質;含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
解:根據(jù)題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數(shù)解,準確理解題意正確計算是本題的解題關鍵.14、1.【解析】
由反比例函數(shù)的性質列出不等式,解出k的范圍,在這個范圍寫出k的整數(shù)解則可.【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整數(shù),∴k的值是:1.故答案為:1.【點睛】本題考查了反比例函數(shù)的性質:當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.15、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.16、詳見解析.【解析】
先根據(jù)不等式的性質求出每個不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【點睛】本題考查了解一元一次不等式組的概念.17、【解析】
根據(jù)新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.18、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2).【解析】分析:(1)連結OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結BD,交AC于點F,根據(jù)菱形的性質得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結論.詳解:(1)連結OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質和銳角三角函數(shù)以及勾股定理.20、(1)見解析;(2)1【解析】
(1)由矩形的性質可知∠A=∠C=90°,由翻折的性質可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點睛】本題考查了折疊的性質、全等三角形的判定和性質以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.21、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點代入y=x-2中即可求出m的值,然后將A的坐標代入反比例函數(shù)中即可求出k的值.(2)①當n=1時,分別求出M、N兩點的坐標即可求出PM與PN的關系;②由題意可知:P的坐標為(n,n),由于PN≥PM,從而可知PN≥2,根據(jù)圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當n=1時,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),點P在直線y=x上,過點P作平行于x軸的直線,交直線y=x-2于點M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3點睛:本題考查反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是求出反比例函數(shù)與一次函數(shù)的解析式,本題屬于基礎題型.22、見解析【解析】
易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點睛】此題主要考查平行四邊形的性質與全等三角形的判定與性質,解題的關鍵是熟知平行四邊形的性質定理.23、+1【解析】分析:直接利用二次根式的性質、負指數(shù)冪的性質和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=2﹣2+3﹣2×=2+1﹣=+1.點睛:本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.24、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國汽車空調鼓風電機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國高速銅纜行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球虛擬首席信息安全官(VCISO)服務行業(yè)調研及趨勢分析報告
- 2025年全球及中國充電保護裝置行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球矯形外科行業(yè)調研及趨勢分析報告
- 2025-2030全球機器人滾柱絲杠行業(yè)調研及趨勢分析報告
- 2025年全球及中國機器人地板洗干一體機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國LLDPE纏繞膜行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國AKD中性施膠劑行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球數(shù)字創(chuàng)意展覽服務行業(yè)調研及趨勢分析報告
- 電力溝施工組織設計-電纜溝
- 《法律援助》課件
- 小兒肺炎治療與護理
- 《高處作業(yè)安全》課件
- 春節(jié)后收心安全培訓
- 小學教師法制培訓課件
- 電梯操作證及電梯維修人員資格(特種作業(yè))考試題及答案
- 市政綠化養(yǎng)護及市政設施養(yǎng)護服務方案(技術方案)
- SLT824-2024 水利工程建設項目文件收集與歸檔規(guī)范
- 鍋爐本體安裝單位工程驗收表格
- 報價單(產(chǎn)品報價單)
評論
0/150
提交評論