版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南京市鼓樓區(qū)金陵匯文校2024屆中考四模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.2.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設(shè)用張鋁片制作瓶身,則可列方程()A. B.C. D.3.已知二次函數(shù)(為常數(shù)),當時,函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或34.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°5.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊參賽,則滿足的關(guān)系式為()A. B. C. D.6.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1087.下列實數(shù)中,有理數(shù)是()A. B. C.π D.8.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)9.某班要推選學生參加學校的“詩詞達人”比賽,有7名學生報名參加班級選拔賽,他們的選拔賽成績各不相同,現(xiàn)取其中前3名參加學校比賽.小紅要判斷自己能否參加學校比賽,在知道自己成績的情況下,還需要知道這7名學生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差10.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-7二、填空題(本大題共6個小題,每小題3分,共18分)11.在矩形ABCD中,對角線AC、BD相交于點O,∠AOB=60°,AC=6cm,則AB的長是_____.12.某市對九年級學生進行“綜合素質(zhì)”評價,評價結(jié)果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學生的評價結(jié)果作為樣本進行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學生中“綜合素質(zhì)”評價結(jié)果為“A”的學生約為_____人.13.已知二次函數(shù)的圖像與軸交點的橫坐標是和,且,則________.14.(題文)如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是_____.15.分解因式:3ax2﹣3ay2=_____.16.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.三、解答題(共8題,共72分)17.(8分)網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關(guān)注,消費者在網(wǎng)店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設(shè)這三種評價是等可能的.(1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.18.(8分)某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).19.(8分)霧霾天氣嚴重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調(diào)查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應(yīng)的圓心角的度數(shù);若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).20.(8分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當點P與E重合時,求PDPC②如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當CE=1,PDPC21.(8分)我省有關(guān)部門要求各中小學要把“陽光體育”寫入課表,為了響應(yīng)這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少名學生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有400名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數(shù)約為多少?22.(10分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.23.(12分)某小區(qū)為了安全起見,決定將小區(qū)內(nèi)的滑滑板的傾斜角由45°調(diào)為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調(diào)整后滑滑板會加長多少米?(結(jié)果精確到0.01米,參考數(shù)據(jù):,,)24.如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.2、C【解析】
設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【詳解】設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點睛】此題主要考查一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系.3、A【解析】
由解析式可知該函數(shù)在x=h時取得最小值1,x>h時,y隨x的增大而增大;當x<h時,y隨x的增大而減?。桓鶕?jù)1≤x≤3時,函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當x=3時,y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,∴①若h<1,當時,y隨x的增大而增大,∴當x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當時,y隨x的增大而減小,當x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進行分類討論是解題的關(guān)鍵.4、C【解析】
根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.5、A【解析】
根據(jù)應(yīng)用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.6、C【解析】
科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【詳解】42.4億=4240000000,用科學記數(shù)法表示為:4.24×1.故選C.【點睛】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.7、B【解析】
實數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分數(shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項錯誤,
B、無限循環(huán)小數(shù)為有理數(shù),符合;
C、為無理數(shù),故本選項錯誤;
D、不能正好開方,即為無理數(shù),故本選項錯誤;故選B.【點睛】本題考查的知識點是實數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實際出發(fā)有理數(shù)有分數(shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.8、C【解析】
延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應(yīng)角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運用所學知識.9、B【解析】
由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學校比賽,只需知道中位數(shù)即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學校比賽,故應(yīng)知道中位數(shù)是多少.故選B.【點睛】本題考查了統(tǒng)計的有關(guān)知識,掌握平均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解題的關(guān)鍵.10、C【解析】
根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當?shù)姆椒ㄟM行求解是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3cm.【解析】
根據(jù)矩形的對角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點睛】本題主要考查矩形的性質(zhì)和等邊三角形的判定和性質(zhì),解本題的關(guān)鍵是掌握矩形的對角線相等且互相平分.12、16000【解析】
用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學生所占的比即可求得結(jié)果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質(zhì)”評價結(jié)果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應(yīng)用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).13、-12【解析】
令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點的橫坐標就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.14、12【解析】根據(jù)題意觀察圖象可得BC=5,點P在AC上運動時,BP⊥AC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以ΔABC的面積是115、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.16、【解析】
根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設(shè)M是△AEF的內(nèi)心,過點M作MH⊥AE于H,
則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)①150;②作圖見解析;③13.3%;(2).【解析】
(1)①用“中評”、“差評”的人數(shù)除以二者的百分比之和即可得總?cè)藬?shù);②用總?cè)藬?shù)減去“中評”、“差評”的人數(shù)可得“好評”的人數(shù),補全條形圖即可;③根據(jù)“差評”的人數(shù)÷總?cè)藬?shù)×100%即可得“差評”所占的百分比;(2)可通過列表表示出甲、乙對商品評價的所有可能結(jié)果數(shù),根據(jù)概率公式即可計算出兩人中至少有一個給“好評”的概率.【詳解】①小明統(tǒng)計的評價一共有:(40+20)÷(1-60%=150(個);②“好評”一共有150×60%=90(個),補全條形圖如圖1:③圖2中“差評”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9種等可能結(jié)果,其中至少有一個給“好評”的有5種,∴兩人中至少有一個給“好評”的概率是.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法.18、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】
(1)根據(jù)“騎電動車”上下的人數(shù)除以所占的百分比,即可得到調(diào)查學生數(shù);用調(diào)查學生數(shù)乘以選擇類的人數(shù)所占的百分比,即可求出選擇類的人數(shù).
(2)求出類的百分比,乘以即可求出類對應(yīng)的扇形圓心角的度數(shù);由總學生數(shù)求出選擇公共交通的人數(shù),補全統(tǒng)計圖即可;
(3)由總?cè)藬?shù)乘以“綠色出行”的百分比,即可得到結(jié)果.【詳解】(1)參與本次問卷調(diào)查的學生共有:(人);選擇類的人數(shù)有:故答案為450、63;(2)類所占的百分比為:類對應(yīng)的扇形圓心角的度數(shù)為:選擇類的人數(shù)為:(人).補全條形統(tǒng)計圖為:(3)估計該校每天“綠色出行”的學生人數(shù)為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)200人,;(2)見解析,;(3)75萬人.【解析】
(1)用A類的人數(shù)除以所占的百分比求出被調(diào)查的市民數(shù),再用B類的人數(shù)除以總?cè)藬?shù)得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應(yīng)的圓心角的度數(shù);(3)用該市的總?cè)藬?shù)乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調(diào)查的市民共有:(人),∴,;(2)組的人數(shù)是(人)、組的人數(shù)是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應(yīng)的圓心角的度數(shù)為:;(3)(萬),∴若該市有100萬人口,市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù)約為75萬人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、統(tǒng)計表,讀懂圖形,找出必要的信息是解題的關(guān)鍵.20、(1)證明見解析;(2)①32【解析】
(1)過點A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽Rt△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【詳解】解:(1)過點A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延長BP、AD交于點F,過點A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP設(shè)BG=1,則PG=PC=1∴BC=AB=5在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴PD②延長BF、AD交于點G,過點A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)設(shè)BH=BP=CE=1∵PDPC∴PG=72,BG=∵AB2=BH·BG∴AB=222∴AH=∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH為等腰直角三角形∴AF=【點睛】考查等腰三角形的性質(zhì),勾股定理,射影定理,平行線分線段成比例定理等,解題的關(guān)鍵是作出輔助線.難度較大.21、(1)該校對50名學生進行了抽樣調(diào)查;(2)最喜歡足球活動的人占被調(diào)查人數(shù)的20%;(3)全校學生中最喜歡籃球活動的人數(shù)約為720人.【解析】
(1)根據(jù)條形統(tǒng)計圖,求個部分數(shù)量的和即可;(2)根據(jù)部分除以總體求得百分比;(3)根據(jù)扇形統(tǒng)計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調(diào)查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調(diào)查人數(shù)的20%.(3)全校學生人數(shù):400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數(shù)約為2000×=720(人).【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民營醫(yī)院規(guī)制度
- 裝備科工作總結(jié)
- 建設(shè)施工機械設(shè)備合同書(3篇)
- 期末總結(jié)范文1200字(32篇)
- 投標保密的承諾書(30篇)
- 大一學生干部個人總結(jié)
- 江蘇省泰州市(2024年-2025年小學五年級語文)人教版期末考試((上下)學期)試卷及答案
- 公共衛(wèi)生主題培訓(xùn)
- 世界歷史九年級上冊教案全冊
- DB11T 1133-2014 人工砂應(yīng)用技術(shù)規(guī)程
- 三年級上冊數(shù)學說課稿《5.筆算多位數(shù)乘一位數(shù)(連續(xù)進位)》人教新課標
- 十字相乘法解一元二次方程練習100題及答案
- 行賄受賄檢討書
- 人教版《勞動教育》六上 勞動項目二《晾曬被子》教學設(shè)計
- (正式版)QC∕T 1208-2024 燃料電池發(fā)動機用氫氣循環(huán)泵
- 中外合作辦學規(guī)劃方案
- 2024年人教版初一道德與法治上冊期中考試卷(附答案)
- 醫(yī)學美容技術(shù)專業(yè)《中醫(yī)美容技術(shù)》課程標準
- CJJ207-2013 城鎮(zhèn)供水管網(wǎng)運行、維護及安全技術(shù)規(guī)程
- 六年級道德與法治期末測試卷加答案(易錯題)
- DL-T1475-2015電力安全工器具配置與存放技術(shù)要求
評論
0/150
提交評論