廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省東莞市石碣鎮(zhèn)市級名校2024年中考試題猜想數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<42.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,83.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.4.研究表明某流感病毒細(xì)胞的直徑約為0.00000156m,用科學(xué)記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1065.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣6.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.57.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,1),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<1;③當(dāng)x<1時,y隨x增大而增大;④拋物線的頂點坐標(biāo)為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤8.下列計算正確的是()A.3a﹣2a=1 B.a(chǎn)2+a5=a7 C.(ab)3=ab3 D.a(chǎn)2?a4=a69.如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(即小正方形的頂點),要使△DEF與△ABC相似,則點F應(yīng)是G,H,M,N四點中的()A.H或N B.G或H C.M或N D.G或M10.從3、1、-2這三個數(shù)中任取兩個不同的數(shù)作為P點的坐標(biāo),則P點剛好落在第四象限的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系中,△的頂點、在坐標(biāo)軸上,點的坐標(biāo)是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標(biāo)是________.12.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.13.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).14.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.15.在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據(jù)是_____.16.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動,設(shè)P點的運(yùn)動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖②所示,當(dāng)P運(yùn)動到BC中點時,△PAD的面積為______.三、解答題(共8題,共72分)17.(8分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.18.(8分)計算:2﹣1+|﹣|++2cos30°19.(8分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.20.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標(biāo)和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標(biāo).21.(8分)某市教育局為了了解初一學(xué)生第一學(xué)期參加社會實踐活動的情況,隨機(jī)抽查了本市部分初一學(xué)生第一學(xué)期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補(bǔ)全條形統(tǒng)計圖;如果該市共有初一學(xué)生20000人,請你估計“活動時間不少于5天”的大約有多少人?22.(10分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結(jié)論.23.(12分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)24.如圖,網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉(zhuǎn)中心,分別畫出把順時針旋轉(zhuǎn),后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設(shè)的三邊,,,請證明勾股定理.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)第四象限內(nèi)點的橫坐標(biāo)是正數(shù),縱坐標(biāo)是負(fù)數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內(nèi)點的坐標(biāo)的符號特征以及解不等式,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【解析】

根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關(guān)鍵.3、D【解析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.4、C【解析】解:,故選C.5、D【解析】

連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質(zhì)的運(yùn)用、勾股定理的運(yùn)用、三角函數(shù)值的運(yùn)用、扇形的面積公式的運(yùn)用、三角形的面積公式的運(yùn)用,解答時運(yùn)用軸對稱的性質(zhì)求解是關(guān)鍵.6、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運(yùn)用數(shù)形結(jié)合的思想.7、B【解析】

由拋物線的對稱軸結(jié)合拋物線與x軸的一個交點坐標(biāo),可求出另一交點坐標(biāo),結(jié)論①正確;當(dāng)x=﹣1時,y>1,得到a﹣b+c>1,結(jié)論②錯誤;根據(jù)拋物線的對稱性得到結(jié)論③錯誤;將x=2代入二次函數(shù)解析式中結(jié)合4a+b+c=1,即可求出拋物線的頂點坐標(biāo),結(jié)論④正確;根據(jù)拋物線的頂點坐標(biāo)為(2,b),判斷⑤.【詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,1),∴拋物線與x軸的另一交點坐標(biāo)為(1,1),∴拋物線過原點,結(jié)論①正確;②∵當(dāng)x=﹣1時,y>1,∴a﹣b+c>1,結(jié)論②錯誤;③當(dāng)x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當(dāng)x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點坐標(biāo)為(2,b),結(jié)論④正確;⑤∵拋物線的頂點坐標(biāo)為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結(jié)論有:①④⑤.故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.8、D【解析】

根據(jù)合并同類項法則、積的乘方及同底數(shù)冪的乘法的運(yùn)算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數(shù)冪的乘法的運(yùn)算法則,熟練運(yùn)用法則是解決問題的關(guān)鍵.9、C【解析】

根據(jù)兩三角形三條邊對應(yīng)成比例,兩三角形相似進(jìn)行解答【詳解】設(shè)小正方形的邊長為1,則△ABC的各邊分別為3、、,只能F是M或N時,其各邊是6、2,2.與△ABC各邊對應(yīng)成比例,故選C【點睛】本題考查了相似三角形的判定,相似三角形對應(yīng)邊成比例是解題的關(guān)鍵10、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點的符號特點是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(-5,)【解析】分析:依據(jù)點B的坐標(biāo)是(2,2),BB2∥AA2,可得點B2的縱坐標(biāo)為2,再根據(jù)點B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進(jìn)而得到點C2的坐標(biāo)是(﹣5,).詳解:如圖,∵點B的坐標(biāo)是(2,2),BB2∥AA2,∴點B2的縱坐標(biāo)為2.又∵點B2落在函數(shù)y=﹣的圖象上,∴當(dāng)y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標(biāo)是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數(shù)的綜合題的知識,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及平移的性質(zhì).在平面直角坐標(biāo)系內(nèi),把一個圖形各個點的橫坐標(biāo)都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度.12、4【解析】

連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進(jìn)而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【點睛】考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.13、1【解析】

由一次函數(shù)圖象經(jīng)過第一、三、四象限,可知k>0,﹣1<0,在范圍內(nèi)確定k的值即可.【詳解】解:因為一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點睛】根據(jù)一次函數(shù)圖象所經(jīng)過的象限,可確定一次項系數(shù),常數(shù)項的值的符號,從而確定字母k的取值范圍.14、17【解析】

先利用完全平方公式展開,然后再求和.【詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.15、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】

(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復(fù)雜作圖、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.16、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當(dāng)P點運(yùn)動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當(dāng)P點運(yùn)動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.三、解答題(共8題,共72分)17、(1)證明見解析;(2).【解析】

(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進(jìn)而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點:相似三角形的判定18、+4.【解析】

原式利用負(fù)整數(shù)指數(shù)冪法則,二次根式性質(zhì),以及特殊角的三角函數(shù)值計算即可求出值.【詳解】原式=++2+2×=+4.【點睛】本題考查了實數(shù)的運(yùn)算,涉及了負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式的化簡等,熟練掌握各運(yùn)算的運(yùn)算法則是解本題的關(guān)鍵.19、123n2n2+x-n【解析】分析:(1)、首先根據(jù)題意得出前6個“三角形數(shù)”分別是多少,從而得出a的值;前5個“正方形數(shù)”分別是多少,從而得出b的值;前4個“正方形數(shù)”分別是多少,從而得出c的值;(2)、根據(jù)前面得出的一般性得出答案.詳解:(1)∵前6個“三角形數(shù)”分別是:1=、3=、6=、10=、15=、21=,

∴第n個“三角形數(shù)”是,∴a=7×82=17×82=1.

∵前5個“正方形數(shù)”分別是:1=12,4=22,9=32,16=42,25=52,

∴第n個“正方形數(shù)”是n2,∴b=62=2.

∵前4個“正方形數(shù)”分別是:1=,5=,12=,22=,

∴第n個“五邊形數(shù)”是n(3n?1)2n(3n?1)2,∴c==3.

(2)第n個“正方形數(shù)”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n個“五邊形數(shù)”是n2+x-n.點睛:此題主要考查了圖形的變化類問題,要熟練掌握,解答此類問題的關(guān)鍵是首先應(yīng)找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.20、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來進(jìn)行證明,假設(shè)存在這樣的點,然后設(shè)出點F的坐標(biāo)求出FH和FG的長度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設(shè)存在滿足條件的點F,如圖所示,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.設(shè)點F的坐標(biāo)為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數(shù)的應(yīng)用21、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據(jù)扇形統(tǒng)計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總?cè)藬?shù),再乘以“活動時間為6天”對應(yīng)的百分比即得對應(yīng)的人數(shù);(3)先求得“活動時間不少于5天”的學(xué)生人數(shù)的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數(shù)為90°;(2)“活動時間為6天”的人數(shù),如圖所示:(3)∵“活動時間不少于5天”的學(xué)生人數(shù)占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統(tǒng)計的應(yīng)用點評:統(tǒng)計的應(yīng)用初中數(shù)學(xué)的重點,在中考中極為常見,一般難度不大.22、(1)(2)△ABC∽△DEF.【解析】

(1)根據(jù)已知條件,結(jié)合網(wǎng)格可以求出∠ABC的度數(shù),根據(jù),△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的長;

(2)根據(jù)相似三角形的判定定理,夾角相等,對應(yīng)邊成比例即可證明△ABC與△DEF相似.【詳解】(1)故答案為(2)△ABC∽△DEF.證明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【點睛】考查勾股定理以及相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.23、(1)證明見解析(2)﹣6π【解析】

(1)直接利用切線的判定方法結(jié)合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論