2024屆上海市重點達標名校中考數(shù)學模試卷含解析_第1頁
2024屆上海市重點達標名校中考數(shù)學模試卷含解析_第2頁
2024屆上海市重點達標名校中考數(shù)學模試卷含解析_第3頁
2024屆上海市重點達標名校中考數(shù)學模試卷含解析_第4頁
2024屆上海市重點達標名校中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市重點達標名校中考數(shù)學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°2.下列運算正確的是()A. B.C.a2?a3=a5 D.(2a)3=2a33.某射手在同一條件下進行射擊,結果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.94.如圖,在正方形網格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,15.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.6.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E7.某班同學畢業(yè)時都將自己的照片向全班其他同學各送一張表示留念,全班共送1035張照片,如果全班有x名同學,根據題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10358.我市某小區(qū)開展了“節(jié)約用水為環(huán)保作貢獻”的活動,為了解居民用水情況,在小區(qū)隨機抽查了10戶家庭的月用水量,結果如下表:月用水量(噸)8910戶數(shù)262則關于這10戶家庭的月用水量,下列說法錯誤的是()A.方差是4 B.極差是2 C.平均數(shù)是9 D.眾數(shù)是99.在一次數(shù)學答題比賽中,五位同學答對題目的個數(shù)分別為7,5,3,5,10,則關于這組數(shù)據的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.610.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°二、填空題(本大題共6個小題,每小題3分,共18分)11.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內有8名教師,那么這個小組的頻率是_______。12.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.13.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.14.現(xiàn)有三張分別標有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(a,b)在直線圖象上的概率為__.15.分解因式:a3﹣a=_____.16.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為_______.三、解答題(共8題,共72分)17.(8分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請你按以上規(guī)律寫出第4個算式;(2)把這個規(guī)律用含字母的式子表示出來;(3)你認為(2)中所寫出的式子一定成立嗎?并說明理由.18.(8分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式.求機場大巴與貨車相遇地到機場C的路程.19.(8分)某鄉(xiāng)鎮(zhèn)實施產業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關系如圖所示.(1)求與的函數(shù)關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.20.(8分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關系,并證明.21.(8分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.22.(10分)某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數(shù)量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?23.(12分)先化簡,再選擇一個你喜歡的數(shù)(要合適哦?。┐肭笾担?+124.如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上).已知AB=80m,DE=10m,求障礙物B,C兩點間的距離.(結果保留根號)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

由AB∥CD,根據兩直線平行,內錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.2、C【解析】

根據算術平方根的定義、二次根式的加減運算、同底數(shù)冪的乘法及積的乘方的運算法則逐一計算即可判斷.【詳解】解:A、=2,此選項錯誤;B、不能進一步計算,此選項錯誤;C、a2?a3=a5,此選項正確;D、(2a)3=8a3,此選項計算錯誤;故選:C.【點睛】本題主要考查二次根式的加減和冪的運算,解題的關鍵是掌握算術平方根的定義、二次根式的加減運算、同底數(shù)冪的乘法及積的乘方的運算法則.3、D【解析】

觀察表格的數(shù)據可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.4、C【解析】

根據A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,

建立平面直角坐標系,如圖,

∴C(2,-1)

故選:C.【點睛】本題考查平面直角坐標系,解題的關鍵是建立直角坐標系,本題屬于基礎題型.5、B【解析】

A.括號前是負號去括號都變號;B負次方就是該數(shù)次方后的倒數(shù),再根據前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點睛】本題考查去括號法則的應用,分式的性質,二次根式的算法,熟記知識點是解題的關鍵.6、C【解析】

根據平行線性質和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關鍵點:熟記全等三角形判定定理.7、B【解析】試題分析:如果全班有x名同學,那么每名同學要送出(x-1)張,共有x名學生,那么總共送的張數(shù)應該是x(x-1)張,即可列出方程.∵全班有x名同學,∴每名同學要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.8、A【解析】分析:根據極差=最大值-最小值;平均數(shù)指在一組數(shù)據中所有數(shù)據之和再除以數(shù)據的個數(shù);一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做眾數(shù),以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分別進行計算可得答案.詳解:極差:10-8=2,平均數(shù):(8×2+9×6+10×2)÷10=9,眾數(shù)為9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故選A.點睛:此題主要考查了極差、眾數(shù)、平均數(shù)、方差,關鍵是掌握各知識點的計算方法.9、D【解析】

根據平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.10、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、0.1【解析】

根據頻率的求法:頻率=,即可求解.【詳解】解:根據題意,38-45歲組內的教師有8名,

即頻數(shù)為8,而總數(shù)為25;

故這個小組的頻率是為=0.1;

故答案為0.1.【點睛】本題考查頻率、頻數(shù)的關系,屬于基礎題,關鍵是掌握頻率的求法:頻率=.12、50°【解析】

延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.13、1或1【解析】

由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關系.此題難度不大,解題的關鍵是注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系,注意分類討論思想的應用.14、【解析】

根據題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結果,根據一次函數(shù)的性質求出在圖象上的點,即可得出答案.【詳解】畫樹狀圖得:

∵共有6種等可能的結果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),

∴點(a,b)在圖象上的概率為.【點睛】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.15、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案為:a(a+1)(a﹣1).16、【解析】

設⊙O半徑為r,根據勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設⊙O半徑為r,則OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE為⊙O的直徑,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.【點睛】考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.三、解答題(共8題,共72分)17、⑴4×6-5⑵答案不唯一.如n(n+2)-(n+1)⑶n(n+2)-(n+1)2==-1.【解析】(1)根據①②③的算式中,變與不變的部分,找出規(guī)律,寫出新的算式;(2)將(1)中,發(fā)現(xiàn)的規(guī)律,由特殊到一般,得出結論;(3)一定成立.利用整式的混合運算方法加以證明.18、(1)連接A、B兩市公路的路程為80km,貨車由B市到達A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】

(1)根據可求出連接A、B兩市公路的路程,再根據貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據函數(shù)圖象上點的坐標,利用待定系數(shù)法即可求出機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式;(3)利用待定系數(shù)法求出線段ED對應的函數(shù)表達式,聯(lián)立兩函數(shù)表達式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.

B兩市公路的路程為80km,貨車由B市到達A市所需時間為h.(2)設所求函數(shù)表達式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式為(3)設線段ED對應的函數(shù)表達式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應的函數(shù)表達式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.【點睛】本題考查一次函數(shù)的應用,掌握待定系數(shù)法求函數(shù)關系式是解題的關鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細心.19、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據圖象利用待定系數(shù)法可求得函數(shù)解析式,再根據蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據利潤=每千克的利潤×銷售量,可得關于x的二次函數(shù),利用二次函數(shù)的性質即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【點睛】本題考查了一次函數(shù)的應用、二次函數(shù)的應用,弄清題意,找出數(shù)量間的關系列出函數(shù)解析式是解題的關鍵.20、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質和判定、等腰三角形的性質和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質是本題的關鍵,第(2)問構建等腰三角形是關鍵.21、(1)詳見解析;(2)【解析】

(1)根據題意平分可得,從而證明即可解答(2)由(1)可知,再根據四邊形是平行四邊形可得,過點作延長線于點,再根據勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論