江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第1頁
江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第2頁
江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第3頁
江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第4頁
江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇溧陽市2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,復(fù)數(shù),若的虛部為1,則()A.2 B.-2 C.1 D.-12.?dāng)?shù)列的通項(xiàng),其前項(xiàng)之和為,則在平面直角坐標(biāo)系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.93.在1和19之間插入個(gè)數(shù),使這個(gè)數(shù)成等差數(shù)列,若這個(gè)數(shù)中第一個(gè)為,第個(gè)為,當(dāng)取最小值時(shí),的值是()A.4 B.5 C.6 D.74.直線與直線的交點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知函數(shù)的部分圖象如圖所示,則()A. B.C. D.6.若是等差數(shù)列,首項(xiàng),,,則使前n項(xiàng)和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40347.已知三棱錐的所有頂點(diǎn)都在球的求面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.8.已知點(diǎn),直線方程為,且直線與線段相交,求直線的斜率k的取值范圍為()A.或 B.或C. D.9.已知圓,由直線上一點(diǎn)向圓引切線,則切線長的最小值為()A.1 B.2 C. D.10.函數(shù)的最小正周期是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的內(nèi)角的對邊分別為.若,則的面積為__________.12.設(shè)的內(nèi)角、、的對邊分別為、、,且滿足.則______.13.實(shí)數(shù)x、y滿足,則的最大值為________.14.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,b=1,則_____________15.已知,,,則的最小值為__________.16.若角的終邊經(jīng)過點(diǎn),則實(shí)數(shù)的值為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知分別是內(nèi)角的對邊,.(1)若,求(2)若,且求的面積.18.在公比不為1的等比數(shù)列中,,且依次成等差數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)令,設(shè)數(shù)列的前項(xiàng)和,求證:19.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個(gè)作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.20.某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制.各等級劃分標(biāo)準(zhǔn)見下表.規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.(I)求和頻率分布直方圖中的的值,并估計(jì)該校高一年級學(xué)生成績是合格等級的概率;(II)在選取的樣本中,從兩個(gè)等級的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是等級的概率.21.在中,角的對邊分別為,且角成等差數(shù)列.(1)求角的值;(2)若,求邊的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】,所以,。故選B。2、B【解析】試題分析:因?yàn)閿?shù)列的通項(xiàng)公式為,所以其前項(xiàng)和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點(diǎn):數(shù)列求和及直線方程.3、B【解析】

設(shè)等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設(shè)等差數(shù)列公差為,則,從而,此時(shí),故,所以,即,當(dāng)且僅當(dāng),即時(shí)取“=”,又,解得,所以,所以,故選:B.【點(diǎn)睛】本題主要考查數(shù)列和不等式的綜合運(yùn)用,需要學(xué)生對所學(xué)知識融會(huì)貫通,靈活運(yùn)用.4、B【解析】

聯(lián)立方程組,求得交點(diǎn)的坐標(biāo),即可得到答案.【詳解】由題意,聯(lián)立方程組:,解得,即兩直線的交點(diǎn)坐標(biāo)為,在第二象限,選B.【點(diǎn)睛】本題主要考查了兩條直線的位置關(guān)系的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.5、D【解析】

由函數(shù)的最值求出A,由周期求出,由五點(diǎn)法作圖求出的值,從而得出結(jié)論.【詳解】根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出,通過函數(shù)經(jīng)過的最大值點(diǎn)求出值,即可得到函數(shù)的解析式.由函數(shù)的圖象可知:,

.

當(dāng),函數(shù)取得最大值1,所以,

故選D.6、D【解析】

由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項(xiàng)和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項(xiàng),,則,,則,,即使前n項(xiàng)和成立的最大正整數(shù),故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),重點(diǎn)考查了等差數(shù)列前項(xiàng)和公式,屬中檔題.7、A【解析】

根據(jù)題意作出圖形:設(shè)球心為O,過ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,延長CO1交球于點(diǎn)D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長為1的正三角形,∴S△ABC=,∴.考點(diǎn):棱錐與外接球,體積.【名師點(diǎn)睛】本題考查棱錐與外接球問題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長方體)的外接球(內(nèi)切球)球心是對角線的交點(diǎn),正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對一般棱錐來講,外接球球心到名頂點(diǎn)距離相等,當(dāng)問題難以考慮時(shí),可減少點(diǎn)的個(gè)數(shù),如先考慮到三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形的外心,球心一定在過此點(diǎn)與此平面垂直的直線上.如直角三角形斜邊中點(diǎn)到三頂點(diǎn)距離相等等等.8、A【解析】

先求出線段的方程,得出,在直線的方程中得到,將代入的表達(dá)式,利用不等式的性質(zhì)求出的取值范圍.【詳解】易求得線段的方程為,得,由直線的方程得,當(dāng)時(shí),,此時(shí),;當(dāng)時(shí),,此時(shí),.因此,實(shí)數(shù)的取值范圍是或,故選A.【點(diǎn)睛】本題考查斜率取值范圍的計(jì)算,可以利用數(shù)形結(jié)合思想,觀察傾斜角的變化得出斜率的取值范圍,也可以利用參變量分離,得出斜率的表達(dá)式,利用不等式的性質(zhì)得出斜率的取值范圍,考查計(jì)算能力,屬于中等題.9、A【解析】

將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑,求出圓心到直線的距離,利用切線的性質(zhì)及勾股定理求處切線長的最小值,即可得到答案.【詳解】將圓化為標(biāo)準(zhǔn)方程,得,所以圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以切線長的最小值為,故選A.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中涉及到圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,以及數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】

將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因?yàn)?,所以最小正周期.故選:C【點(diǎn)睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計(jì)算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識、基本方法、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點(diǎn)睛】本題涉及正數(shù)開平方運(yùn)算,易錯(cuò)點(diǎn)往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯(cuò)誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細(xì)心計(jì)算.12、4【解析】

解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點(diǎn)作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.13、【解析】

根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃求最大值,屬于簡單題.14、2【解析】

根據(jù)條件,利用余弦定理可建立關(guān)于c的方程,即可解出c.【詳解】由余弦定理得,即,解得或(舍去).故填2.【點(diǎn)睛】本題主要考查了利用余弦定理求三角形的邊,屬于中檔題.15、25【解析】

變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時(shí)取等號.故答案為:25【點(diǎn)睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.16、.【解析】

利用三角函數(shù)的定義以及誘導(dǎo)公式求出的值.【詳解】由誘導(dǎo)公式得,另一方面,由三角函數(shù)的定義得,解得,故答案為.【點(diǎn)睛】本題考查誘導(dǎo)公式與三角函數(shù)的定義,解題時(shí)要充分利用誘導(dǎo)公式求特殊角的三角函數(shù)值,并利用三角函數(shù)的定義求參數(shù)的值,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1【解析】試題分析:(1)由,結(jié)合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面積計(jì)算公式即可得出試題解析:(1)由題設(shè)及正弦定理可得又,可得由余弦定理可得(2)由(1)知因?yàn)椋晒垂啥ɡ淼霉?,得所以的面積為1考點(diǎn):正弦定理,余弦定理解三角形18、(1)(2)見證明【解析】

(1)根據(jù)已知條件得到關(guān)于的方程組,解方程組得的值,即得數(shù)列的通項(xiàng)公式;(2)先求出,,再利用裂項(xiàng)相消法求,不等式即得證.【詳解】(1)設(shè)公比為,,,成等差數(shù)列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【點(diǎn)睛】本題主要考查等比數(shù)列通項(xiàng)的求法,考查等差數(shù)列前n項(xiàng)和的求法,考查裂項(xiàng)相消法求和,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(1)選擇①,;選擇②,(2)【解析】

(1)選擇①,利用正弦定理余弦定理化簡即得C;選擇②,利用正弦定理化簡即得C的值;(2)根據(jù)余弦定理得,再求的面積.【詳解】解:(1)選擇①根據(jù)正弦定理得,從而可得,根據(jù)余弦定理,解得,因?yàn)椋?選擇②根據(jù)正弦定理有,即,即因?yàn)?,故,從而有,故?)根據(jù)余弦定理得,得,即,解得,又因?yàn)榈拿娣e為,故的面積為.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.20、(I),;(II).【解析】試題分析:(I)根據(jù)頻率直方圖的相關(guān)概率易求,依據(jù)樣本估計(jì)總體的思想可得該校高一年級學(xué)生成績是合格等級的概率;(II)記“至少有一名學(xué)生是等級”事件為,求事件對立事件的的概率,可得.試題解析:(I)由題意可知,樣本容量因?yàn)槌煽兪呛细竦燃壢藬?shù)為:人,抽取的50人中成績是合格等級的頻率為,依據(jù)樣本估計(jì)總體的思想,所以,該校高一年級學(xué)生成績是合格等級的概率為(II)由莖葉圖知,等級的學(xué)生共有3人,等級學(xué)生共有人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論