2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆青海師大二附中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.102.已知,,下列不等式成立的是()A. B.C. D.3.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.04.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點,AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個數(shù)()①AC∥平面BEF;②B、C、E、F四點可能共面;③若EF⊥CF,則平面ADEF⊥平面ABCD;④平面BCE與平面BEF可能垂直A.0 B.1 C.2 D.35.對一切實數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.6.如果圓上總存在點到原點的距離為,則實數(shù)的取值范圍為()A. B. C. D.7.某同學(xué)用收集到的6組數(shù)據(jù)對(xi,yi)(i=1,2,3,4,5,6)制作成如圖所示的散點圖(點旁的數(shù)據(jù)為該點坐標(biāo)),并由最小二乘法計算得到回歸直線l的方程:x,相關(guān)指數(shù)為r.現(xiàn)給出以下3個結(jié)論:①r>0;②直線l恰好過點D;③1;其中正確的結(jié)論是A.①② B.①③C.②③ D.①②③8.已知某幾何體的三視圖如圖所示,則該幾何體的體積為A. B. C. D.9.若函數(shù)()的最大值與最小正周期相同,則下列說法正確的是()A.在上是增函數(shù) B.圖象關(guān)于直線對稱C.圖象關(guān)于點對稱 D.當(dāng)時,函數(shù)的值域為10.若,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為的樣本,其中甲種產(chǎn)品有18件,則樣本容量=.12.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.13.函數(shù),的遞增區(qū)間為______.14.若數(shù)列滿足,,,則______.15.已知函數(shù)的部分圖象如圖所示,則_______.16.在三棱錐中,已知,,則三棱錐內(nèi)切球的表面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,是邊長為2的正三角形.若,平面,平面平面,,且.(1)求證:平面;(2)求證:平面平面.18.如圖,已知函數(shù),點分別是的圖像與軸、軸的交點,分別是的圖像上橫坐標(biāo)為的兩點,軸,共線.(1)求的值;(2)若關(guān)于的方程在區(qū)間上恰有唯一實根,求實數(shù)的取值范圍.19.已知數(shù)列,,,且.(1)設(shè),證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)若,并且數(shù)列的前項和為,不等式對任意正整數(shù)恒成立,求正整數(shù)的最小值.(注:當(dāng)時,則)20.已知,其中,,.(1)求的單調(diào)遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.21.已知函數(shù)f(x)=x2(1)寫出函數(shù)g(x)的解析式;(2)若直線y=ax+1與曲線y=g(x)有三個不同的交點,求a的取值范圍;(3)若直線y=ax+b與曲線y=f(x)在x∈[-2,1]內(nèi)有交點,求(a-1)2

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應(yīng)用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.2、A【解析】

由作差法可判斷出A、B選項中不等式的正誤;由對數(shù)換底公式以及對數(shù)函數(shù)的單調(diào)性可判斷出C選項中不等式的正誤;利用指數(shù)函數(shù)的單調(diào)性可判斷出D選項中不等式的正誤.【詳解】對于A選項中的不等式,,,,,,,,A選項正確;對于B選項中的不等式,,,,,,,B選項錯誤;對于C選項中的不等式,,,,,,,即,C選項錯誤;對于D選項中的不等式,,函數(shù)是遞減函數(shù),又,所以,D選項錯誤.故選A.【點睛】本題考查不等式正誤的判斷,常見的比較大小的方法有:(1)比較法;(2)中間值法;(3)函數(shù)單調(diào)性法;(4)不等式的性質(zhì).在比較大小時,可以結(jié)合不等式的結(jié)構(gòu)選擇合適的方法來比較,考查推理能力,屬于中等題.3、A【解析】

依次求得的值,進(jìn)而求得的值.【詳解】當(dāng)時,;當(dāng)時,,;當(dāng)時,;故.故選:A.【點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列每一項,屬于基礎(chǔ)題.4、C【解析】

根據(jù)折疊前后線段、角的變化情況,由線面平行、面面垂直的判定定理和性質(zhì)定理對各命題進(jìn)行判斷,即可得出答案.【詳解】對①,在圖②中,連接交于點,取中點,連接MO,易證AOMF為平行四邊形,即AC//FM,所以AC//平面BEF,故①正確;對②,如果B、C、E、F四點共面,則由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,這樣四邊形ADEF為平行四邊形,與已知矛盾,故②不正確;對③,在梯形ADEF中,由平面幾何知識易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,則平面ADEF平面ABCD,故③正確;對④,在圖②中,延長AF至G,使得AF=FG,連接BG,EG,易得平面BCE平面ABF,BCEG四點共面.過F作FNBG于N,則FN平面BCE,若平面BCE平面BEF,則過F作直線與平面BCE垂直,其垂足在BE上,矛盾,故④錯誤.故選:C.【點睛】本題主要考查線面平行、線面垂直、面面垂直的判定定理和性質(zhì)定理的應(yīng)用,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于中檔題.5、A【解析】

時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.6、B【解析】

將圓上的點到原點的距離轉(zhuǎn)化為圓心到原點的距離加減半徑得到答案.【詳解】,圓心為半徑為1圓心到原點的距離為:如果圓上總存在點到原點的距離為即圓心到原點的距離即故答案選B【點睛】本題考查了圓上的點到原點的距離,轉(zhuǎn)化為圓心到原點的距離加減半徑是解題的關(guān)鍵.7、A【解析】由圖可知這些點分布在一條斜率大于零的直線附近,所以為正相關(guān),即相關(guān)系數(shù)因為所以回歸直線的方程必過點,即直線恰好過點;因為直線斜率接近于AD斜率,而,所以③錯誤,綜上正確結(jié)論是①②,選A.8、A【解析】

根據(jù)三視圖可知幾何體為三棱錐,根據(jù)棱錐體積公式求得結(jié)果.【詳解】由三視圖可知,幾何體為三棱錐三棱錐體積為:本題正確選項:【點睛】本題考查棱錐體積的求解,關(guān)鍵是能夠通過三視圖確定幾何體為三棱錐,且通過三視圖確定三棱錐的底面和高.9、A【解析】

先由函數(shù)的周期可得,再結(jié)合三角函數(shù)的性質(zhì)及三角函數(shù)值域的求法逐一判斷即可得解.【詳解】解:由函數(shù)()的最大值與最小正周期相同,所以,即,即,對于選項A,令,解得:,即函數(shù)的增區(qū)間為,當(dāng)時,函數(shù)在為增函數(shù),即A正確,對于選項B,令,解得,即函數(shù)的對稱軸方程為:,又無解,則B錯誤,對于選項C,令,解得,即函數(shù)的對稱中心為:,又無解,則C錯誤,對于選項D,,則,即函數(shù)的值域為,即D錯誤,綜上可得說法正確的是選項A,故選:A.【點睛】本題考查了三角函數(shù)的性質(zhì),重點考查了三角函數(shù)值域的求法,屬中檔題.10、D【解析】

根據(jù)對數(shù)運算可求得且,,利用基本不等式可求得最小值.【詳解】由得:且,(當(dāng)且僅當(dāng)時取等號)本題正確選項:【點睛】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠利用對數(shù)運算得到積的定值,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:由題意得,解得,故答案為.考點:分層抽樣.12、【解析】

由拋物線的對稱性知A、B關(guān)于x軸對稱,設(shè)出它們的坐標(biāo),利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標(biāo),問題得以解決.【詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當(dāng)x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題13、[0,](開區(qū)間也行)【解析】

根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間,以及題中條件,即可求出結(jié)果.【詳解】由得:,又,所以函數(shù),的遞增區(qū)間為.故答案為【點睛】本題主要考查正弦型函數(shù)的單調(diào)區(qū)間,熟記正弦函數(shù)的單調(diào)區(qū)間即可,屬于??碱}型.14、【解析】

由,化簡得,則為等差數(shù)列,結(jié)合已知條件得.【詳解】由,化簡得,且,,得,所以是以為首項,以為公差的等差數(shù)列,所以,即故答案為:【點睛】本題考查了數(shù)列的遞推式,考查了判斷數(shù)列是等差數(shù)列的方法,屬于中檔題.15、【解析】

由圖可得,即可求得:,再由圖可得:當(dāng)時,取得最大值,即可列方程,整理得:,解得:(),結(jié)合即可得解.【詳解】由圖可得:,所以,解得:由圖可得:當(dāng)時,取得最大值,即:整理得:,所以()又,所以【點睛】本題主要考查了三角函數(shù)圖象的性質(zhì)及觀察能力,還考查了轉(zhuǎn)化思想及計算能力,屬于中檔題.16、【解析】

先計算出三棱錐的體積,利用等體積法求出三棱錐的內(nèi)切球的半徑,再求出內(nèi)切球的表面積?!驹斀狻咳D中點為E,并連接AE、BE在中,由等腰三角形的性質(zhì)可得,同理則在中點A到邊BE的距離即為點A到平面BCD的距離h,在中,【點睛】本題綜合考查了三棱錐的體積、三棱錐內(nèi)切圓的求法、球的表面積,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)取的中點,連接,由平面平面,得平面,再證即可證明(2)證明平面,再根據(jù)面面垂直的判定定理從而進(jìn)行證明.【詳解】(1)取的中點,連接,因為,且,.所以,.又因為平面平面,所以平面,又平面,所以又因為平面,平面,所以平面.(2)連接,由(1)知,又,,所以四邊形是平行四邊形,所以.又是正三角形,為的中點,∴,因為平面平面,所以平面,所以平面.又平面,所以.因為,,所以平面.因為平面,所以平面平面.【點睛】本題考查了線面平行的證明,線面垂直,面面垂直的判定定理,考查空間想象和推理能力,熟記定理是關(guān)鍵,是一道中檔題.18、(Ⅰ),(Ⅱ)或【解析】試題分析:解:(Ⅰ)建立,.(Ⅱ),結(jié)合圖象可知或.試題解析:解:(Ⅰ)①②解得,.(Ⅱ),,因為時,,由方程恰有唯一實根,結(jié)合圖象可知或.19、(1)證明見解析,(2)10【解析】

(1)根據(jù)等比數(shù)列的定義,結(jié)合題中條件,計算,,即可證明數(shù)列是等比數(shù)列,求出;再根據(jù)累加法,即可求出數(shù)列的通項;(2)根據(jù)題意,得到,分別求出,當(dāng),用放縮法得,根據(jù)裂項相消法求,進(jìn)而可求出結(jié)果.【詳解】(1)證明:,而∴是以4為首項2為公比的等比數(shù)列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知條件知當(dāng)時,,即∴,而綜上所述得最小值為10.【點睛】本題主要考查證明數(shù)列為等比數(shù)列,求數(shù)列的通項公式,以及數(shù)列的應(yīng)用,熟記等比數(shù)列的概念,累加法求數(shù)列的通項公式,以及裂項相消法求數(shù)列的和等即可,屬于常考題型.20、(1);(2).【解析】試題分析:(1)化簡得,代入,求得增區(qū)間為;(2)由求得,余弦定理得.因為向量與共線,所以,由正弦定理得,解得.試題解析:(1)由題意知,,在上單調(diào)遞增,令,得,的單調(diào)遞增區(qū)間.(2),又,即.,由余弦定理得.因為向量與共線,所以,由正弦定理得.考點:三角函數(shù)恒等變形、解三角形.21、(1)g(x)=0,-x2【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論