版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市楊浦區(qū)交大附中2025屆高一數(shù)學第二學期期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合,,,則()A. B. C. D.2.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.43.已知平面上四個互異的點、、、滿足:,則的形狀一定是()A.等邊三角形 B.直角三角形 C.等腰三角形 D.鈍角三角形4.已知,,為坐標原點,則的外接圓方程是()A. B.C. D.5.函數(shù)的部分圖象如圖所示,則的單調(diào)遞減區(qū)間為A.B.C.D.6.若,則下列不等式成立的是A. B. C. D.7.一個正方體內(nèi)接于一個球,過球心作一個截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③8.執(zhí)行如圖所示的程序框圖,令,若,則實數(shù)a的取值范圍是A. B.C. D.9.已知三條相交于一點的線段兩兩垂直且在同一平面內(nèi),在平面外、平面于,則垂足是的()A.內(nèi)心 B.外心 C.重心 D.垂心10.若平面α∥平面β,直線平面α,直線n?平面β,則直線與直線n的位置關系是()A.平行 B.異面C.相交 D.平行或異面二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足,,則數(shù)列的通項公式______.12.在中,角、、所對應邊分別為、、,,的平分線交于點,且,則的最小值為______13.命題“,”是________命題(選填“真”或“假”).14.已知向量、滿足||=2,且與的夾角等于,則||的最大值為_____.15.已知數(shù)列中,其中,,那么________16.命題“數(shù)列的前項和”成立的充要條件是________.(填一組符合題意的充要條件即可,所填答案中不得含有字母)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列的前項和為,若,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)若的,求的最大值.18.已知的三個頂點為.(1)求過點且平行于的直線方程;(2)求過點且與、距離相等的直線方程.19.已知函數(shù).(1)用五點法作圖,填表井作出的圖像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求實數(shù)m的取值范圍.20.已知函數(shù)(其中).(1)當時,求不等式的解集;(2)若關于的不等式恒成立,求的取值范圍.21.已知某公司生產(chǎn)某款手機的年固定成本為400萬元,每生產(chǎn)1萬部還需另投入160萬元.設公司一年內(nèi)共生產(chǎn)該款手機x(x≥40)萬部且并全部銷售完,每萬部的收入為R(x)萬元,且R(x)=74000(1)寫出年利潤W(萬元)關于年產(chǎn)量x(萬部)的函數(shù)關系式;(2)當年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】因為,所以,又因為,,故選A.2、B【解析】
根據(jù)分段函數(shù)的表達式求解即可.【詳解】由題.故選:B【點睛】本題主要考查了分段函數(shù)的求值,屬于基礎題型.3、C【解析】
由向量的加法法則和減法法則化簡已知表達式,再由向量的垂直和等腰三角形的三線合一性質(zhì)得解.【詳解】設邊的中點,則所以在中,垂直于的中線,所以是等腰三角形.故選C.【點睛】本題考查向量的線性運算和數(shù)量積,屬于基礎題.4、A【解析】
根據(jù)圓的幾何性質(zhì)判斷出是直徑,由此求得圓心坐標和半徑,進而求得三角形外接圓的方程.【詳解】由于直角對的弦是直徑,故是圓的直徑,所以圓心坐標為,半徑為,所以圓的標準方程為,化簡得,故選A.【點睛】本小題主要考查三角形外接圓的方程的求法,考查圓的幾何性質(zhì),屬于基礎題.5、D【解析】
根據(jù)圖象可得最小正周期,求得;利用零點和的符號可確定的取值;令,解不等式即可求得單調(diào)遞減區(qū)間.【詳解】由圖象可知:又,,由圖象可知的一個可能的取值為令,,解得:,即的單調(diào)遞減區(qū)間為:,本題正確選項:【點睛】本題考查利用圖象求解余弦型函數(shù)的解析式、余弦型函數(shù)單調(diào)區(qū)間的求解問題;關鍵是能夠靈活應用整體對應的方式來求解解析式和單調(diào)區(qū)間,屬于??碱}型.6、C【解析】
利用的單調(diào)性直接判斷即可?!驹斀狻恳驗樵谏线f增,又,所以成立。故選:C【點睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎題。7、A【解析】
分別當截面平行于正方體的一個面時,當截面過正方體的兩條相交的體對角線時,當截面既不過體對角線也不平行于任一側(cè)面時,進行判定,即可求解.【詳解】由題意,當截面平行于正方體的一個面時得③;當截面過正方體的兩條相交的體對角線時得④;當截面既不過正方體體對角線也不平行于任一側(cè)面時可能得①;無論如何都不能得②.故選A.【點睛】本題主要考查了正方體與球的組合體的截面問題,其中解答中熟記空間幾何體的結構特征是解答此類問題的關鍵,著重考查了空間想象能力,以及推理能力,屬于基礎題.8、D【解析】該程序的功能是計算并輸出分段函數(shù).當時,,解得;當時,,解得;當時,,無解.綜上,,則實數(shù)a的取值范圍是.故選D.9、D【解析】
根據(jù)題意,結合線線垂直推證線面垂直,以及根據(jù)線面垂直推證線線垂直,即可求解?!驹斀狻窟B接BH,延長BH與AC相交于E,連接AH,延長AH交BC于D,作圖如下:因為,故平面PBC,又平面PBC,故;因為平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE與AD交于點H,故H點為的垂心.故選:D.【點睛】本題考查線線垂直與線面垂直之間的相互轉(zhuǎn)化,屬綜合中檔題.10、D【解析】
由面面平行的定義,可得兩直線無公共點,可得所求結論.【詳解】平面α∥平面β,可得兩平面α,β無公共點,即有直線與直線也無公共點,可得它們異面或平行,故選:D.【點睛】本題考查空間線線的位置關系,考查面面平行的定義,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【點睛】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.12、18【解析】
根據(jù)三角形面積公式找到的關系,結合基本不等式即可求得最小值.【詳解】根據(jù)題意,,因為的平分線交于點,且,所以而所以,化簡得則當且僅當,即,時取等號,即最小值為.故答案為:【點睛】本題考查三角形面積公式和基本不等式,考查計算能力,屬于中等題型13、真【解析】當時,成立,即命題“,”為真命題.14、【解析】
在中,令,可得,可得點在半徑為的圓上,,可得,進而可得的最大值.【詳解】∵向量、滿足||=1,且與的夾角等于,如圖在中,令,,可得可得點B在半徑為R的圓上,1R4,R=1.則||的最大值為1R=4【點睛】本題考查了向量的夾角、模的運算,屬于中檔題.15、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以為首項,以為公比的等比數(shù)列,然后利用等比數(shù)列的通項公式求解.【詳解】由,得,,則數(shù)列是以為首項,以為公比的等比數(shù)列,.故答案為:1.【點睛】本題考查數(shù)列的遞推關系、等比數(shù)列通項公式,考查運算求解能力,特別是對復雜式子的理解.16、數(shù)列為等差數(shù)列且,.【解析】
根據(jù)題意,設該數(shù)列為,由數(shù)列的前項和公式分析可得數(shù)列為等差數(shù)列且,,反之驗證可得成立,綜合即可得答案.【詳解】根據(jù)題意,設該數(shù)列為,若數(shù)列的前項和,則當時,,當時,,當時,符合,故有數(shù)列為等差數(shù)列且,,反之當數(shù)列為等差數(shù)列且,時,,;故數(shù)列的前項和”成立的充要條件是數(shù)列為等差數(shù)列且,,故答案為:數(shù)列為等差數(shù)列且,.【點睛】本題考查充分必要條件的判定,關鍵是掌握充分必要條件的定義,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)6.【解析】
(1)根據(jù)已知條件,結合,得到,再由已知條件求得,即可求得等比數(shù)列的通項公式;(2)根據(jù)(1)中的結果化簡得到,由此結合已知條件,即可求解.【詳解】(1)由已知,所以,即,從而,,又因為成等差數(shù)列,即,所以,解得,所以數(shù)列是首項為2,公比為2的等比數(shù)列,故;(2)因為,所以,即,所以,所以,所以的最大值為6.【點睛】本題主要考查了等比數(shù)列的通項公式及前n項和公式的應用,以及數(shù)列的與關系式的應用,其中解答中數(shù)列與關系式和等比數(shù)列的通項公式、前n項和公式,準確計算是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.18、(1);(2).【解析】
(1)先由兩點寫出直線BC的方程,再根據(jù)點斜式寫出目標直線的方程;(2)過點B且與直線AC平行的直線即為所求,注意垂直平分線不過點B,故舍去.【詳解】(1)由、兩點的坐標可得,因為待求直線與直線BC平行,故其斜率為由點斜式方程可得目標直線方程為整理得.(2)由、點的坐標可知,其中點坐標為又直線AC沒有斜率,故其垂直平分線為,此直線不經(jīng)過點B,故垂直平分線舍去;則滿足題意的直線為與直線AC平行的直線,即.綜上所述,滿足題意的直線方程為.【點睛】本題考查直線方程的求解,屬基礎題.19、(1)見解析;(2)時,,時,;(3).【解析】
(1)當時,求出相應的x,然后填入表中;標出5個點,然后用一條光滑的曲線把它們連接起來;(2)先根據(jù)x的范圍求出的范圍,再由正弦函數(shù)的性質(zhì)可求出函數(shù)的最大值和最小值;(3)不等式在上恒成立,轉(zhuǎn)化為在上恒成立,進一步轉(zhuǎn)化為m-2,m+2與函數(shù)在上的最值關系,列不等式后求得實數(shù)m的取值范圍.【詳解】(1)x0y131-10(2),,即,所以的最大值為3,最小值為2.(3),,由(2)知,,,且,即m的取值范圍為.【點睛】本題考查正弦函數(shù)的最值和恒成立問題,把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與的最值關系的問題是解決本題的關鍵,屬于中檔題.20、(1)或;(2).【解析】
(1)先由,將不等式化為,直接求解,即可得出結果;(2)先由題意得到恒成立,根據(jù)含絕對值不等式的性質(zhì)定理,得到,從而可求出結果.【詳解】(1)當時,求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,即為,即關于的不等式恒成立.而,所以,解得或,解得或.所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記不等式的解法,以及絕對值不等式的性質(zhì)定理即可,屬于??碱}型.21、(1)W=73600-400000x-160x,(x≥40);(2)當x=50【解析】
(1)根據(jù)題意,即可求解利潤關于產(chǎn)量的關系式為W=(2)由(1)的關系式,利用基本不等式求得最大值,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024食品冷鏈物流服務與供貨合同范本3篇
- 2024水輪發(fā)電機組設備采購合同
- 2024版草料運輸合同范本
- 2024年船舶租賃合同:詳細列出租賃船舶的租金調(diào)整機制、續(xù)租條件等
- 電子政務數(shù)據(jù)共享合作協(xié)議
- 2025年度體育賽事贊助與營銷合同3篇
- 葉酸強化食品的臨床應用研究-洞察分析
- 2024年資本注入合同模板3篇
- 2024年項目工程分包合同2篇
- 2024年酒店大堂花卉擺設租賃合同
- 車間現(xiàn)場防錯培訓課件
- 數(shù)字媒體技術基礎知識單選題100道及答案解析
- 全國職業(yè)院校技能大賽高職組(生產(chǎn)事故應急救援賽項)選拔賽考試題庫500題(含答案)
- 無痛分娩與鎮(zhèn)痛管理制度
- 2025屆中考英語復習課件(外研版廣西專用)13-八年級(下)Modules 1-2
- 2024-2025學年年八年級數(shù)學人教版下冊專題整合復習卷第11章 全等三角形單元試卷(含答案)
- 華電考試初級理論復習試題及答案
- 塔吊司機和指揮培訓
- 紅色簡約2025蛇年介紹
- 專題3-6 雙曲線的離心率與常用二級結論【12類題型】(解析版)-A4
- 光伏電站運維課件
評論
0/150
提交評論