2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省德州市躍華中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列的通項公式,其前項和為,則等于()A. B. C. D.2.已知數(shù)列滿足,,,則的值為()A.12 B.15 C.39 D.423.某學(xué)校高一、高二、高三教師人數(shù)分別為100、120、80,為了解他們在“學(xué)習(xí)強國”平臺上的學(xué)習(xí)情況,現(xiàn)用分層抽樣的方法抽取容量為45的樣本,則抽取高一教師的人數(shù)為()A.12 B.15 C.18 D.304.在平行四邊形中,,若點滿足且,則A.10 B.25 C.12 D.155.的值為A. B. C. D.6.若直線:與直線:垂直,則實數(shù)().A. B. C.2 D.或27.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.8.已知銳角滿足,則()A. B. C. D.9.一個體積為的正三棱柱(底面為正三角形,且側(cè)棱垂直于底面的棱柱)的三視圖如圖所示,則該三棱柱的側(cè)視圖的面積為()A. B.3 C. D.1210.已知圓錐的底面半徑為,母線與底面所成的角為,則此圓錐的側(cè)面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若直線上存在滿足以下條件的點:過點作圓的兩條切線(切點分別為),四邊形的面積等于,則實數(shù)的取值范圍是_______12.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點__________.13.若等差數(shù)列和等比數(shù)列滿足,,則_______.14.如圖甲是第七屆國際數(shù)學(xué)教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構(gòu)成數(shù)列,則此數(shù)列的通項公式為_____.15.把二進制數(shù)化為十進制數(shù)是:______.16.實數(shù)2和8的等比中項是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖為函數(shù)f(x)=Asin(Ⅰ)求函數(shù)f(x)=Asin(Ⅱ)若x∈0,π2時,函數(shù)y=18.如圖,圓錐中,是圓的直徑,是底面圓上一點,且,點為半徑的中點,連.(Ⅰ)求證:平面;(Ⅱ)當(dāng)是邊長為4的正三角形時,求點到平面的距離.19.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.20.在凸四邊形中,.(1)若,,,求的大?。?)若,且,求四邊形的面積.21.已知的外接圓的半徑為,內(nèi)角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時的周長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

依據(jù)為周期函數(shù),得到,并項求和,即可求出的值。【詳解】因為為周期函數(shù),周期為4,所以,,故選B。【點睛】本題主要考查數(shù)列求和方法——并項求和法的應(yīng)用,以及三角函數(shù)的周期性,分論討論思想,意在考查學(xué)生的推理論證和計算能力。2、B【解析】

根據(jù)等差數(shù)列的定義可得數(shù)列為等差數(shù)列,求出通項公式即可.【詳解】由題意得所以為等差數(shù)列,,,選擇B【點睛】本題主要考查了判斷是否為等差數(shù)列以及等差數(shù)列通項的求法,屬于基礎(chǔ)題.3、B【解析】

由分層抽樣方法即按比例抽樣,運算即可得解.【詳解】解:由分層抽樣方法可得抽取高一教師的人數(shù)為,故選:B.【點睛】本題考查了分層抽樣方法,屬基礎(chǔ)題.4、C【解析】

先由題意,用,表示出,再由題中條件,根據(jù)向量數(shù)量積的運算,即可求出結(jié)果.【詳解】因為點滿足,所以,則故選C.【點睛】本題主要考查向量數(shù)量積的運算,熟記平面向量基本定理以及數(shù)量積的運算法則即可,屬于常考題型.5、B【解析】

試題分析:由誘導(dǎo)公式得,故選B.考點:誘導(dǎo)公式.6、A【解析】試題分析:直線:與直線:垂直,則,.考點:直線與直線垂直的判定.7、A【解析】設(shè)甲到達時刻為,乙到達時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.8、D【解析】

根據(jù)為銳角可求得,根據(jù)特殊角三角函數(shù)值可知,從而得到,進而求得結(jié)果.【詳解】,又,即本題正確選項:【點睛】本題考查三角函數(shù)值的求解問題,關(guān)鍵是能夠熟悉特殊角的三角函數(shù)值,根據(jù)角的范圍確定特殊角的取值.9、A【解析】

根據(jù)側(cè)視圖的寬為求出正三角形的邊長為4,再根據(jù)體積求出正三棱柱的高,再求側(cè)視圖的面積?!驹斀狻總?cè)視圖的寬即為俯視圖的高,即三角形的邊長為4,又側(cè)視圖的面積為:【點睛】理解:側(cè)視圖的寬即為俯視圖的高,即可求解本題。10、B【解析】

首先計算出母線長,再利用圓錐的側(cè)面積(其中為底面圓的半徑,為母線長),即可得到答案.【詳解】由于圓錐的底面半徑,母線與底面所成的角為,所以母線長,故圓錐的側(cè)面積;故答案選B【點睛】本題考查圓錐母線和側(cè)面積的計算,解題關(guān)鍵是熟練掌握圓錐的側(cè)面積的計算公式,即(其中為底面圓的半徑,為母線長),屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過畫出圖形,可計算出圓心到直線的最短距離,建立不等式即可得到的取值范圍.【詳解】作出圖形,由題意可知,,此時,四邊形即為,而,故,勾股定理可知,而要是得存在點P滿足該條件,只需O到直線的距離不大于即可,即,所以,故的取值范圍是.【點睛】本題主要考查直線與圓的位置關(guān)系,點到直線的距離公式,意在考查學(xué)生的轉(zhuǎn)化能力,計算能力,分析能力,難度中等.12、【解析】

根據(jù)線性回歸方程一定過樣本中心點,計算這組數(shù)據(jù)的樣本中心點,求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【點睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎(chǔ)題.13、【解析】

設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進而求出和的值,由此可得出的值.【詳解】設(shè)等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉(zhuǎn)化為解關(guān)于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.14、【解析】

由圖可知,由勾股定理可得,利用等差數(shù)列的通項公式求解即可.【詳解】根據(jù)圖形,因為都是直角三角形,,是以1為首項,以1為公差的等差數(shù)列,,,故答案為.【點睛】本題主要考查歸納推理的應(yīng)用,等差數(shù)列的定義與通項公式,以及數(shù)形結(jié)合思想的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于與中檔題.15、51【解析】110011(2)16、【解析】所求的等比中項為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)f(x)=23【解析】

(Ⅰ)根據(jù)三角函數(shù)的圖像,得到周期,求出ω=2,再由函數(shù)零點,得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由題意得到f(x)∈-1,233,再將函數(shù)【詳解】(Ⅰ)由圖象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函數(shù)y=f(x)2-2f(x)-m∵f(x)∈∴f(x)-1因此,實數(shù)m的取值范圍是-1,3.【點睛】本題主要考查由三角函數(shù)的部分圖像求解析式的問題,以及由函數(shù)的零點求參數(shù)的問題,熟記三角函數(shù)的圖像與性質(zhì)即可,屬于??碱}型.18、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)由平面,證得,再由為等邊三角形,得到,利用線面垂直的判定定理,即可證得平面;(Ⅱ)利用等體積法,即可求得點到平面的距離.【詳解】(Ⅰ)證明:在圓錐中,則平面,又因為平面,所以,因為,,所以,又,所以為等邊三角形,因為為中點,所以,又,所以平面;(Ⅱ)依題意,,因為為直徑,所以,又,所以,中,邊上的高為,的面積為,又,,則面積為,所以,解得.【點睛】本題主要考查了線面垂直的判定與證明,以及利用等體積法求解點面距,其中解答中熟練線面位置關(guān)系的判定定理,以及合理運用等體積法的運用是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1)證明見解析;(2)【解析】

(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項公式,進而求得的表達式,利用分組求和法求得.【詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【點睛】本小題主要考查根據(jù)遞推關(guān)系式證明等差數(shù)列,考查分組求和法,屬于中檔題.20、(1);(2)【解析】

(1)在中利用余弦定理可求得,從而可知,求得;在中利用正弦定理求得結(jié)果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,從而構(gòu)造出關(guān)于的方程,結(jié)合和為銳角可求得;根據(jù)化簡求值可得到結(jié)果.【詳解】(1)連接在中,,,由余弦定理得:,則在中,由正弦定理得:,解得:(2)連接在中,由余弦定理得:又在中,由余弦定理得:,即又為銳角,則四邊形面積:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理、余弦定理解三角形、三角形面積公式的應(yīng)用;關(guān)鍵是能夠利用余弦定理構(gòu)造出關(guān)于角的正余弦值的方程,結(jié)合同角三角函數(shù)的平方關(guān)系構(gòu)造方程可求得三角函數(shù)值;易錯點是忽略角的范圍,造成求解錯誤.21、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論