版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省泰州市泰興一中數(shù)學高一下期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于空間中的兩條直線,和一個平面,下列結論正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度3.已知向量,,如果向量與平行,則實數(shù)的值為()A. B. C. D.4.已知,則的最小值是()A.2 B.6 C.2 D.25.已知等差數(shù)列和的前項和分別為和,.若,則的取值集合為()A. B.C. D.6.在中,角,,的對邊分別是,,,若,則()A. B. C. D.7.若,則下列不等式正確的是()A. B. C. D.8.已知直線3x?y+1=0的傾斜角為α,則A. B.C.? D.9.設,,,則,,的大小關系是()A. B. C. D.10.在中,,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形二、填空題:本大題共6小題,每小題5分,共30分。11.點到直線的距離為________.12.平面四邊形如圖所示,其中為銳角三角形,,,則_______.13.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.14.______.15.設函數(shù),則的值為__________.16.數(shù)列中,,則____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列是遞增的等比數(shù)列,且(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設為數(shù)列的前n項和,,求數(shù)列的前n項和.18.已知,,且(1)求函數(shù)的解析式;(2)當時,的最小值是,求此時函數(shù)的最大值,并求出函數(shù)取得最大值時自變量的值19.如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E為PD的中點,點F在PC上,且.(Ⅰ)求證:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)設點G在PB上,且.判斷直線AG是否在平面AEF內,說明理由.20.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.21.已知.(1)化簡;(2)若,且為第一象限角,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
依次分析每個選項中兩條直線與平面的位置關系,確定兩條直線的位置關系即可.【詳解】平行于同一平面的兩條直線不一定相互平行,故選項A錯誤,平行于平面的直線不一定與該平面內的直線平行,故選項B錯誤,垂直于平面的直線,垂直于與該平面平行的所有線,故選項C正確,垂直于同一平面的兩條直線相互平行,故選項D錯誤.故選:C.【點睛】本題考查了直線與平面位置關系的辨析,屬于基礎題.2、C【解析】
利用誘導公式,的圖象變換規(guī)律,得出結論.【詳解】為了得到函數(shù)的圖象,
只需將函數(shù)圖象上所有的點向左平移個單位長度,
故選C.3、B【解析】
根據坐標運算求出和,利用平行關系得到方程,解方程求得結果.【詳解】由題意得:,,解得:本題正確選項:【點睛】本題考查向量平行的坐標表示問題,屬于基礎題.4、B【解析】試題分析:因為,故.考點:基本不等式的運用,考查學生的基本運算能力.5、D【解析】
首先根據即可得出,再根據前n項的公式計算出即可?!驹斀狻?,選D.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質,屬于難題.等差數(shù)列的常用性質有:(1)通項公式的推廣:
(2)若
為等差數(shù)列,
;(3)若是等差數(shù)列,公差為,
,則是公差
的等差數(shù)列;6、D【解析】
由題意,再由余弦定理可求出,即可求出答案.【詳解】由題意,,設,由余弦定理可得:,則.故選D.【點睛】本題考查了正、余弦定理的應用,考查了計算能力,屬于中檔題.7、C【解析】
根據不等式性質,結合特殊值即可比較大小.【詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【點睛】本題考查了不等式大小比較,不等式性質及特殊值的簡單應用,屬于基礎題.8、A【解析】
由題意利用直線的傾斜角和斜率求出tanα的值,再利用三角恒等變換,求出要求式子的值.【詳解】直線3x-y+1=0的傾斜角為α,∴tanα=3,
∴,
故選A.【點睛】本題主要考查直線的傾斜角和斜率,三角恒等變換,屬于中檔題.9、D【解析】
首先確定題中,,的取值范圍,再根據大小排序即可.【詳解】由題知,,,,所以排序得到.故選:D.【點睛】本題主要考查了比較指數(shù)對數(shù)的大小問題,屬于基礎題.10、B【解析】解:二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據點到直線的距離公式,代值求解即可.【詳解】根據點到直線的距離公式,點到直線的距離為.故答案為:3.【點睛】本題考查點到直線的距離公式,屬基礎題.12、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【詳解】由題意,在中,,在中,,即,解得,或.若,則,,不合題意,舍去,所以.故答案為:.【點睛】本題考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解題關鍵.13、【解析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.14、【解析】
,,故答案為.考點:三角函數(shù)誘導公式、切割化弦思想.15、【解析】
根據反正切函數(shù)的值域,結合條件得出的值.【詳解】,且,因此,,故答案為:.【點睛】本題考查反正切值的求解,解題時要結合反正切函數(shù)的值域以及特殊角的正切值來求解,考查計算能力,屬于基礎題.16、1【解析】
利用極限運算法則求解即可【詳解】故答案為:1【點睛】本題考查數(shù)列的極限,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】試題分析:(1)設等比數(shù)列的公比為q,,根據已知由等比數(shù)列的性質可得,聯(lián)立解方程再由數(shù)列為遞增數(shù)列可得則通項公式可得(2)根據等比數(shù)列的求和公式,有所以,裂項求和即可試題解析:(1)設等比數(shù)列的公比為q,所以有聯(lián)立兩式可得或者又因為數(shù)列為遞增數(shù)列,所以q>1,所以數(shù)列的通項公式為(2)根據等比數(shù)列的求和公式,有所以所以考點:等比數(shù)列的通項公式和性質,數(shù)列求和18、(1)(2)【解析】試題分析:(1)由向量的數(shù)量積運算代入點的坐標得到三角函數(shù)式,運用三角函數(shù)基本公式化簡為的形式;(2)由定義域可得到的范圍,結合函數(shù)單調性求得函數(shù)最值及對應的自變量值試題解析:(1)即(2)由,,,,,此時,考點:1.向量的數(shù)量積運算;2.三角函數(shù)化簡及三角函數(shù)性質19、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結論;(Ⅱ)建立空間直角坐標系,結合兩個半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得點G的坐標,然后結合平面的法向量和直線AG的方向向量可判斷直線是否在平面內.【詳解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,則PA⊥CD,由題意可知AD⊥CD,且PA∩AD=A,由線面垂直的判定定理可得CD⊥平面PAD.(Ⅱ)以點A為坐標原點,平面ABCD內與AD垂直的直線為x軸,AD,AP方向為y軸,z軸建立如圖所示的空間直角坐標系,易知:,由可得點F的坐標為,由可得,設平面AEF的法向量為:,則,據此可得平面AEF的一個法向量為:,很明顯平面AEP的一個法向量為,,二面角F-AE-P的平面角為銳角,故二面角F-AE-P的余弦值為.(Ⅲ)易知,由可得,則,注意到平面AEF的一個法向量為:,其且點A在平面AEF內,故直線AG在平面AEF內.20、(1)見解析;(2)【解析】
(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設,在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點睛】本題主要考查了線面垂直的證明,考查了轉化能力,還考查了線面角知識,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聯(lián)創(chuàng)聯(lián)建協(xié)議書
- 供應商保密協(xié)議承諾書
- 馬鈴薯種薯購銷合同書
- 2025年山東貨運從業(yè)資格證答題技巧與方法
- 電力項目開發(fā)合同(2篇)
- 電力合同結束協(xié)議(2篇)
- 2024秋六年級語文上冊 第一單元 4 花之歌說課稿 新人教版
- 六年級上冊數(shù)學計算題200道(含答案)
- 川教版信息技術(2019)五年級上冊第三單元 圖形化編程之聰明的角色 3 克隆躲避隕石-說課稿
- 服務員月初工作計劃范本
- 《工程電磁場》配套教學課件
- 遼寧省錦州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 改革開放的歷程(終稿)課件
- 職位管理手冊
- IPQC首檢巡檢操作培訓
- 餐飲空間設計課件ppt
- 肉制品加工技術完整版ppt課件全套教程(最新)
- (中職)Dreamweaver-CC網頁設計與制作(3版)電子課件(完整版)
- 行政人事助理崗位月度KPI績效考核表
- 紀檢監(jiān)察機關派駐機構工作規(guī)則全文詳解PPT
- BP-2C 微機母線保護裝置技術說明書 (3)
評論
0/150
提交評論