河北省臨西縣高三新高考第一次模擬考試數(shù)學試題_第1頁
河北省臨西縣高三新高考第一次模擬考試數(shù)學試題_第2頁
河北省臨西縣高三新高考第一次模擬考試數(shù)學試題_第3頁
河北省臨西縣高三新高考第一次模擬考試數(shù)學試題_第4頁
河北省臨西縣高三新高考第一次模擬考試數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省臨西縣高三新高考第一次模擬考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.2.若,則實數(shù)的大小關系為()A. B. C. D.3.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.4.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值5.若集合,,則()A. B. C. D.6.設全集為R,集合,,則A. B. C. D.7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.9.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.5410.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數(shù)為()A. B. C. D.11.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.12.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.14.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.15.在平面直角坐標系中,點在曲線:上,且在第四象限內.已知曲線在點處的切線為,則實數(shù)的值為__________.16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)若函數(shù)的值域為A,且,求a的取值范圍.18.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.19.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.20.(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數(shù))與圓的位置關系.21.(12分)某網(wǎng)絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.22.(10分)已知,,求證:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識,屬于中檔題.2、A【解析】

將化成以為底的對數(shù),即可判斷的大小關系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數(shù)函數(shù)的性質可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質,考查了對數(shù)函數(shù)的性質,考查了對數(shù)的運算性質.兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構造對數(shù)函數(shù),結合對數(shù)的單調性可判斷大??;若真數(shù)相同,則結合對數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.3、B【解析】

雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.4、D【解析】

A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.5、A【解析】

用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.6、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.7、D【解析】

根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.8、D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.9、C【解析】

由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質與求和公式,屬于中檔題.解等差數(shù)列問題要注意應用等差數(shù)列的性質()與前項和的關系.10、B【解析】

因為時針經(jīng)過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經(jīng)過2小時,時針所轉過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.11、B【解析】

試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.12、B【解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.14、【解析】

由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結論.【詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數(shù)列的通項公式,遞推公式轉化為等比數(shù)列是解題的關鍵,利用累加法求通項公式,屬于中檔題.15、【解析】

先設切點,然后對求導,根據(jù)切線方程的斜率求出切點的橫坐標,代入原函數(shù)求出切點的縱坐標,即可得出切得,最后將切點代入切線方程即可求出實數(shù)的值.【詳解】解:依題意設切點,因為,則,又因為曲線在點處的切線為,,解得,又因為點在第四象限內,則,.則又因為點在切線上.所以.所以.故答案為:【點睛】本題考查了導數(shù)的幾何意義,以及導數(shù)的運算法則和已知切線斜率求出切點坐標,本題屬于基礎題.16、0.08【解析】

先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關鍵,側重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】

(1)分類討論去絕對值即可;(2)根據(jù)條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數(shù)g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數(shù)g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點睛】本題考查了絕對值不等式的解法和利用集合間的關于求參數(shù)的取值范圍,考查了轉化思想和分類討論思想,屬于中檔題.18、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數(shù)的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區(qū)間上單調遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調遞增,在單調遞減,若有兩個根,則可得,當時,,所以在區(qū)間上單調遞增,所以.19、(1)見解析(2)【解析】

(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.20、直線與圓C相切.【解析】

首先把直線和圓轉換為直角坐標方程,進一步利用點到直線的距離的應用求出直線和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論