版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省東臺市第一中學高三3月份模擬考試新高考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.2.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數為()A.1 B.2 C.3 D.43.函數的部分圖象如圖所示,已知,函數的圖象可由圖象向右平移個單位長度而得到,則函數的解析式為()A. B.C. D.4.在區(qū)間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.5.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.46.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.7.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.8.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.59.已知函數,,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.10.對某兩名高三學生在連續(xù)9次數學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據甲同學成績折線圖提供的數據進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.111.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}12.若,則,,,的大小關系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.14.設,則_____,(的值為______.15.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.16.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)18.(12分)隨著現代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預算(全年按9000小時計算)?并說明理由.19.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統(tǒng)計數據.從這些統(tǒng)計數據中隨機抽取了個數據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數據的中位數和眾數;(2)以這個樣本數據中優(yōu)秀員工的頻率作為概率,任意調查名工人,求被調查的名工人中優(yōu)秀員工的數量分布列和數學期望.20.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.21.(12分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.22.(10分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.2、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數,當時,,當即時,取等號,當時,函數沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.3、A【解析】
由圖根據三角函數圖像的對稱性可得,利用周期公式可得,再根據圖像過,即可求出,再利用三角函數的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數的解析式、三角函數圖像的平移伸縮變換,需掌握三角形函數的平移伸縮變換原則,屬于基礎題.4、D【解析】
利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.5、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.6、B【解析】
由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.7、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.8、A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.9、C【解析】
根據的零點和最值點列方程組,求得的表達式(用表示),根據在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數的零點和最值,考查三角函數的性質,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于中檔題.10、C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據甲同學成績折線圖提供的數據進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.11、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.12、D【解析】因為,所以,因為,,所以,.綜上;故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.14、7201【解析】
利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結果.【詳解】利用二項式系數公式,,故,,故(=,故答案為:720;1.【點睛】本題考查二項展開式的通項公式的應用,考查賦值法,是基礎題.15、【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.16、【解析】
設,由雙曲線的定義得出:,由得為等腰三角形,設,根據,可求出,得出,再結合焦點三角形,利用余弦定理:求出和的關系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數據填寫列聯表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數為.完善列聯表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯表獨立性檢驗,屬于基礎題.18、(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數的單調性,可得期望的最大值,從而得出結論.【詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個時間段需要檢查污染源處理系統(tǒng)的概率為.(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調遞增;當時,,在上單調遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發(fā)生的概率、期望,及運用求導函數研究期望的最值,由根據期望值確定方案,此類題目解決的關鍵在于將生活中的量轉化為數學中和量,屬于中檔題.19、(1)43,47;(2)分布列見解析,.【解析】
(1)根據莖葉圖即可得到中位數和眾數;(2)根據數據可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數為,眾數為.(2)被調查的名工人中優(yōu)秀員工的數量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據莖葉圖求眾數和中位數,求離散型隨機變量分布列,根據分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.20、(1)見解析;(2)見解析【解析】
(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024民間借貸合同主體的認定及舉證責任分配
- 天然氣開采業(yè)的人才需求與培養(yǎng)計劃研究考核試卷
- 美麗校園家長會
- 2024成都市勞動合同范本下載
- 危險品倉儲設備與設施管理考核試卷
- 《兒童情緒疏導》課件
- 《感覺器官的功能》課件
- 藝術學科部門述職報告
- 社會調查類報告
- 人工智能在電子游戲開發(fā)中的創(chuàng)新考核試卷
- MOOC 唐宋詩詞與傳統(tǒng)文化-湖南師范大學 中國大學慕課答案
- 電網建設項目施工項目部環(huán)境保護和水土保持標準化管理手冊(變電工程分冊)
- 2024年中考歷史八年級上冊重點知識點復習提綱(部編版)
- 小兒過敏性休克課件
- GB/T 144-2024原木檢驗
- (高清版)TDT 1062-2021 社區(qū)生活圈規(guī)劃技術指南
- 安全生產治本攻堅三年行動方案(2024-2026年)解讀
- T-GDWJ 020-2023 醫(yī)療機構醫(yī)療護理員服務規(guī)范
- 彈力襪的使用課件
- 2024年醫(yī)學高級職稱-婦女保健(醫(yī)學高級)筆試歷年真題薈萃含答案
- 子宮內低氧癥護理措施
評論
0/150
提交評論